摘要:
Methods for energy-sensitive computed tomography systems that use checkerboard filtering. A method of enhancing image analysis of projection data acquired using a detector configured with a checkerboard filter includes disposing in a system a detector to receive a transmitted beam of X-rays traversing through an object, where the system is configured so the detector receives both high- and one of total- and low-energy projection data; receiving the high- and one of total- and low-energy projection data at the detector; and then estimating an effective atomic number of the object and/or processing the projection data so as to mitigate reconstruction artifacts. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appended claims.
摘要:
A technique is provided for the temporal interpolation of a projection data set acquired of a dynamic object, such as a heart. The projection data set is acquired using a slowly rotating gantry and a distributed X-ray source. The projection data may be interpolated at each view position to a selected instant of time, such as relative to a cardiac phase. The resulting interpolated projection data characterize the projection data at each view location at any instant in time. The set of interpolated projection data may then be reconstructed to generate images and/or volume with improved temporal resolution.
摘要:
A method, computed tomography (CT) system and computer-readable medium for reconstructing an image volume of an object scanned in helical mode. An embodiment of the method includes determining discrete focal lengths within an imaging plane of the reconstructed field of view comprising the image volume; generating a circular scan sinogram(s) for the discrete focal lengths by interpolating the helical views; selecting within a backprojection operation a circular scan sonogram(s), for one or more image points within the imaging plane, over one or more circular views. The method then includes using the selected circular scan sinogram(s), in the backprojection of the image points point(s) over the circular views view(s) and performing a backprojection for all the image points over all the circular views to generate a reconstructed image of the object.
摘要:
An X-ray detection and inspection system is disclosed. The system includes an X-ray source configured to generate an interrogating X-ray beam, wherein the X-ray beam is directed towards a probe volume in a sample, one or more two-dimensional area detectors, wherein the one or more detectors are positioned at angles other than 90 degrees with respect to the direction of the interrogating beam and are configured to receive and detect non-circular conic sections of diffracted X rays from the probe volume, and an acquisition and analysis system configured to generate position and intensity data of the non-circular conic sections such that the corresponding mathematical equations of the conic sections could be generated, to identify one of a quasi-monochromatic or monochromatic XRD pattern from the non-circular conic sections, and to determine a position of the probe volume and at least two Bragg diffraction angles from said XRD pattern.
摘要:
An X-ray imaging system is provided that includes a target for emitting X-rays and having at least one target focal spot, and an array of multilayer optic devices for transmitting X-rays through total internal reflection. The array of multilayer optics devices are in optical communication with the at least one target focal spot. Further, a method for imaging an object with an X-ray imaging machine is provided. Also, a method for forming a stack of multilayer optic devices is provided.
摘要:
An X-ray imaging system is provided that includes a target for emitting X-rays and having at least one target focal spot, and an array of multilayer optic devices for transmitting X-rays through total internal reflection. The array of multilayer optics devices are in optical communication with the at least one target focal spot. Further, a method for imaging an object with an X-ray imaging machine is provided. Also, a method for forming a stack of multilayer optic devices is provided.
摘要:
One or more techniques are provided for adapting a reconstruction process to account for the motion of an imaged object or organ, such as the heart. In particular, projection data of the moving object or organ is acquired using a slowly rotating CT gantry. Motion data may be determined from the projection data or from images reconstructed from the projection data. The motion data may be used to reconstruct motion-corrected images from the projection data. The motion-corrected images may be associated to form motion-corrected volume renderings.
摘要:
Configurations for stationary imaging systems are provided. The configurations may include combinations of various types of distributed sources of X-ray radiation, which generally include addressable emitter elements which may be triggered for emission in desired sequences and combinations. The sources may be ring-like, partial ring-like, or line-like (typically along a Z-axis), and so forth. Combinations of these are envisaged. Corresponding detectors may also be full ring detectors or partial ring detectors associated with the sources to provide sufficient coverage of imaging volumes and to provide the desired mathematical completeness of the collected data.
摘要:
A system and method for forming x-rays. One exemplary system includes a target and electron emission subsystem with a plurality of electron sources. Each of the plurality of electron sources is configured to generate a plurality of discrete spots on the target from which x-rays are emitted. Another exemplary system includes a target, an electron emission subsystem with a plurality of electron sources, each of which generates at least one of the plurality of spots on the target, and a transient beam protection subsystem for protecting the electron emission subsystem from transient beam currents and material emissions from the target.
摘要:
A method for computing volumetric perfusion using a computed tomography imaging (CT) system is presented. The method includes irradiating a spatially dynamic object within a field of view of the computed tomography imaging system for requisite view angle positions of the gantry. Furthermore, the method includes operating the computed tomography imaging system in a continuous data acquisition mode to acquire projection data representative of the spatially dynamic object. In addition, the method includes processing the projection data to generate time-resolved projection data. Reconstructions are generated using the time-resolved projection data. Additionally, the method includes computing the volumetric perfusion in the spatially dynamic object using the reconstructed data. Computer-readable medium that afford functionality of the type defined by this method is also contemplated in conjunction with the present technique.