Abstract:
Various features pertain to cryptographic ciphers such as Advanced Encryption Standard (AES) block ciphers. In some examples described herein, a modified masked AES SubBytes procedure uses a static lookup table that is its own inverse in GF(22). The static lookup table facilitates computation of the multiplicative inverse during nonlinear substitution operations in GF(22) In an AES encryption example, the AES device combines plaintext with a round key to obtain combined data, then routes the combined data through an AES SubBytes substitution stage that employs the static lookup table and a dynamic table to perform a masked multiplicative inverse in GF(22) to obtain substituted data. The substituted data is then routed through additional cryptographic AES stages to generate ciphertext. The additional stages may include further SubBytes stages that also exploit the static and dynamic tables. Other examples employ either a static lookup table or a dynamic lookup table but not both.
Abstract:
Methods, systems, and devices are described for provisioning of devices, such as UEs, for service at a wireless network. One or more device parameters may be identified for use in provisioning the device on the wireless network, which may be provided to a network element. The network element may use the provided parameters to access a subscription server. The subscription server may provide verification and/or subscription parameters of the device that may then be used by the device to verify that the device is authorized to access the wireless network.
Abstract:
Methods, devices, and systems for detecting return-oriented programming (ROP) exploits are disclosed. A system includes a processor, a main memory, and a cache memory. A cache monitor develops an instruction loading profile by monitoring accesses to cached instructions found in the cache memory and misses to instructions not currently in the cache memory. A remedial action unit terminates execution of one or more of the valid code sequences if the instruction loading profile is indicative of execution of an ROP exploit involving one or more valid code sequences. The instruction loading profile may be a hit/miss ratio derived from monitoring cache hits relative to cache misses. The ROP exploits may include code snippets that each include an executable instruction and a return instruction from valid code sequences.
Abstract:
The present application relates generally to wireless communication systems and more specifically to systems, methods, and devices for remote credentials management within wireless communication systems. In one aspect, a method of obtaining provisioning information via a service provider network, such as a cellular network, for a device is provided. The method includes transmitting an attach request via the service provider network for provisioning service, the attach request including device vendor information which includes a unique identifier for the device. The method further includes receiving provisioning information from the service provider upon authentication of the device vendor information. In other aspects, systems and methods for providing provisioning information are described.
Abstract:
A particular method includes transmitting a message from a first device to a second device. The message includes first information associated with identification of the first device. The first information enables the second device to obtain access data. The method also includes establishing a first communication link between the first device and the second device based on the access data. The method further includes receiving, via the first communication link, second information associated with establishment of a second communication link between the first device and a third device. The method also includes configuring the first device to establish the second communication link between the first device and the third device based on the second information.
Abstract:
A method and apparatus are provided for a subsidizing service provider entity to personalize a subscriber device to ensure the subscriber device cannot be used in a network of a different service provider entity. As the service provider entity subsidizes the subscriber device, it desires to ensure that subscriber device is personalized such that the subscriber device may operate only in its network and not a network of a different service provider entity. The subscriber device is pre-configured with a plurality of provider-specific and/or unassociated root certificates by the manufacturer of the subscriber device. A communication service is established between the service provider entity and the subscriber device allowing for the mutual authentication of the subscriber device and the service provider entity. After mutual authentication, the service provider entity sends a command to the subscriber device to disable/delete some/all root certificates that are unassociated with the service provider entity.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may transmit, to a relay UE, a first message comprising a first freshness parameter, an identity of the UE, and authentication information, where the authentication information is used by a network node to authenticate the UE with security context information of the UE. The UE may derive a relay key for security establishment between the UE and the relay UE based on the first freshness parameter, a set of key generation parameters, and a shared key with the network node. The UE may derive a relay session key for security establishment between the UE and the relay UE based on the relay key, a first nonce of the UE, and a second nonce of the relay UE. Numerous other aspects are described.
Abstract:
In an aspect, the present disclosure includes a method, apparatus, and computer readable medium for wireless communications for configuring of a NAS COUNT value of a mapped EPS security context associated with an intersystem change of a UE from a 5G system to an EPS. The aspect includes generating, by a UE, a mapped EPS security context associated with an intersystem change of the UE from a 5G system to an EPS, wherein the mapped EPS security context comprises security parameters created based a 5G security context used for the 5G system, the security parameters enabling security-related communications between the UE and a network entity; determining an UL NAS COUNT value and the DL NAS COUNT value for the mapped EPS security context; and transmitting, by the UE, a NAS message to the network entity, the NAS message including the UL NAS COUNT value of the mapped EPS security context.
Abstract:
In an aspect, a network supporting client devices includes one or more network nodes implementing network functions. Such network functions enable a client device to apply a security context to communications with the network when the client device is not in a connected mode. The client device obtains a user plane key shared with a user plane network function implemented at a first network node and/or a control plane key shared with a control plane network function implemented at a second network node. The client device protects a data packet with the user plane key or a control packet with the control plane key. The data packet includes first destination information indicating the first network node and the control packet includes second destination information indicating the second network node. The client device transmits the data packet or control packet.
Abstract:
The present disclosure provides techniques that may be applied, for example, for providing network policy information in a secure manner. In some cases, a UE may receive a first message for establishing a secure connection with a network, wherein the first message comprises network policy information, generate a first key based in part on the network policy information, and use the first key to verify the network policy information.