Abstract:
A cooling system in which an electronic or other component is cooled by using one or more solid sources of liquid vapor in conjunction with one or more high-temperature vapor sorbents or desiccants that effectively transfer heat from the component to the fluid in the wellbore. The latent heats associated with phase changes and dehydration of a hydrate can provide substantial cooling capacity per unit volume of hydrate, which is particularly important in those applications where space is limited. According to the present invention, a sorption cooling and heating system is provided for use in a well, such as downhole tool which is in a drill string through which a drilling fluid flows, or in a downhole tool, which is on a wireline. Electronics, sensors, or clocks adjacent to a hydrate are not only kept cool by the heat sinking effect of hydrate phase changes and evaporation of water that is released but, during phase changes, they are being kept at a constant temperature for extended periods of time, which further improves their stability. Furthermore, such a system can also be used to heat a sample chamber or other component by placing it adjacent to the high-temperature sorbent or desiccant that heats up as it adsorbs the water vapor that was released by a low-temperature hydrate or desiccant during dehydration.
Abstract:
The present invention provides an down hole apparatus and method for ultrahigh resolution spectroscopy using a tunable diode laser (TDL) for analyzing a formation fluid sample downhole or at the surface to determine formation fluid parameters. In addition to absorption spectroscopy, the present invention can perform Raman spectroscopy on the fluid, by sweeping the wavelength of the TDL and detecting the Raman-scattered light using a narrow-band detector at a fixed wavelength. The spectrometer analyzes a pressurized well bore fluid sample that is collected downhole. The analysis is performed either downhole or at the surface onsite. Near infrared, mid-infrared and visible light analysis is also performed on the sample to provide an onsite surface or downhole analysis of sample properties and contamination level. The onsite and downhole analysis comprises determination of aromatics, olefins, saturates, gas oil ratio, API gravity and various other parameters which can be estimated by correlation, a trained neural network or a chemometric equation.
Abstract:
A system and method for acquiring seismic data are disclosed. The system comprises a controller for causing the generation of a seismic signal, where the controller has a first clock used for time-stamping a record of the generated seismic signal. A seismic receiver is deployed in a wellbore so as to detect the generated seismic signal. An atomic clock is disposed in or with the seismic receiver for time-stamping a record of the detected seismic signal. The atomic clock is synchronized with the first clock prior to being placed downhole.
Abstract:
A cooling system in which an electronic component is cooled by using one or more containers of liquid and sorbent that transfer heat from the component to the fluid in the well bore. According to the present invention, a sorption cooling and heating system is provided for use in a well, such as down hole tool which is in a drill string through which a drilling fluid flows, or in a down hole tool, which is on a wire line. This cooling system comprises a housing adapted to be disposed in a wellbore, the sorption cooler comprising a water supply adjacent to a sensor or electronics to be cooled; a Dewar flask lined with phase change material surrounding the electronics/sensor and liquid supply; a vapor passage for transferring vapor from the water supply; and a sorbent in thermal contact with the housing for receiving and adsorbing the water vapor from the vapor passage and transferring the heat from the sorbed water vapor through the housing to the drilling fluid or well bore. The electronics or sensors adjacent to the water supply are cooled by the evaporation of the liquid. A sample chamber to be heated or other element such as a clock crystal which is intended to be heated for stability can be placed adjacent to the dessicant to provide heat.
Abstract:
The present invention is a method for improving the estimation of physical properties of a material, based on the infrared spectrum of the material, by concatenating additional data obtained from other measurement techniques to the infrared spectrum to fill the voids in the spectral data resulting from a lack of sensitivity by infrared spectrometers to trace compounds in the material. The augmented spectral data then is used to produce a calibration model for estimating the physical properties of the material.
Abstract:
Methods are provided for determining the amount of fluids in a porous sample and determining petrophysical properties of those fluids. The methods employ a two component azeotropic solvent capable of dissolving both hydrocarbon and aqueous fluids in a porous sample. The methods extract the fluids from the porous sample with a soxhlet extractor using the azeotropic solvent and then separates the two components into a solvent containing hydrocarbon fluids and a solvent containing aqueous fluids. The amounts of these extracted fluids may then be determined and the petrophysical properties of the fluids determined.
Abstract:
Methods and apparatus are disclosed for determining oil saturation in sponge coring using solvents which dissolve substantially all of the oil but none of the sponge. Two classes of such solvents are specified. One is aprotic, and the resultant concentration of oil in it is measured by proton NMR spectroscopy. The other has no C--H bonds, and the resultant concentration of oil in it is measured by infrared spectroscopy.
Abstract:
An ultrasonic sound absorbing material capable of operating at high temperatures and pressures, said material comprises a dense, rigid, permeable material such as sintered metal filled with a viscous fluid.
Abstract:
An apparatus for estimating an ambient environment at which inorganic scale will form in a downhole fluid includes a stress chamber disposed in a borehole in a production zone at a location within a specified range of maximum pressure and configured to receive a sample of the fluid from the production zone and to apply an ambient condition to the sample that causes the formation of inorganic scale. An inorganic scale sensor is configured to sense formation of inorganic scale within the chamber and an ambient environment sensor is configured to sense an ambient environment within the chamber at which the formation of inorganic scale occurs. The apparatus further includes a processor configured to receive measurement data from the inorganic scale sensor and the ambient environment sensor and to identify the ambient environment at which the formation of inorganic scale occurs.
Abstract:
A method, system and drilling apparatus for directional drilling are disclosed. A drill bit is located at a downhole end of a drill string in a borehole. A length of the borehole between a surface location and the drill bit at the downhole end of a drill string is determined and an azimuth angle and inclination of the drill bit is obtained. The length of the borehole may be determined by recording an arrival time at a downhole location of an acoustic pulse travelling from a surface location to the downhole location and determines the travel time and borehole length therefrom. A downhole processor determines a position and orientation of the drill bit from the determined length, azimuth angle and inclination and alters a steering parameter of the drill bit using the determined position and orientation of the drill bit to obtain a selected trajectory for drilling the borehole.