摘要:
A method quantifies cardiac volume flow for an imaging sequence. The method includes receiving data representing three-dimensions and color Doppler flow data over a plurality of frames, constructing a ventricular model based on the data representing three-dimensions for the plurality of frames, the ventricular model including a sampling plane configured to measure the cardiac volume flow, computing volume flow samples based on the sampling plane and the color Doppler flow data, and correcting the volume flow samples for aliasing based on volumetric change in the ventricular model between successive frames of the plurality of frames.
摘要:
A method and system for coronary artery detection in 3D cardiac volumes is disclosed. The heart chambers are segmented in the cardiac volume, and an initial estimation of a coronary artery is generated based on the segmented heart chambers. The initial estimation of the coronary artery is then refined based on local information in the cardiac volume in order to detect the coronary artery in the cardiac volume. The detected coronary artery can be extended using 3D dynamic programming.
摘要:
A method and system for modeling the pulmonary trunk in 4D image data, such as 4D CT data, and model-based percutaneous pulmonary valve implantation (PPVI) intervention is disclosed. A patient-specific dynamic pulmonary trunk data is generated from 4D image data of a patient. The patient is automatically classified as suitable for PPVI intervention or not suitable for PPVI intervention based on the generated patient-specific dynamic pulmonary trunk model.
摘要:
A method and system for multi-scale anatomical and functional modeling of coronary circulation is disclosed. A patient-specific anatomical model of coronary arteries and the heart is generated from medical image data of a patient. A multi-scale functional model of coronary circulation is generated based on the patient-specific anatomical model. Blood flow is simulated in at least one stenosis region of at least one coronary artery using the multi-scale function model of coronary circulation. Hemodynamic quantities, such as fractional flow reserve (FFR), are computed to determine a functional assessment of the stenosis, and virtual intervention simulations are performed using the multi-scale function model of coronary circulation for decision support and intervention planning.
摘要:
A method and system for generating a patient specific anatomical heart model is disclosed. A sequence of volumetric image data, such as computed tomography (CT), echocardiography, or magnetic resonance (MR) image data of a patient's cardiac region is received. A multi-component patient specific 4D geometric model of the heart and aorta estimated from the sequence of volumetric cardiac imaging data. A patient specific 4D computational model based on one or more of personalized geometry, material properties, fluid boundary conditions, and flow velocity measurements in the 4D geometric model is generated. Patient specific material properties of the aortic wall are estimated using the 4D geometrical model and the 4D computational model. Fluid Structure Interaction (FSI) simulations are performed using the 4D computational model and estimated material properties of the aortic wall, and patient specific clinical parameters are extracted based on the FSI simulations. Disease progression modeling and risk stratification are performed based on the patient specific clinical parameters.
摘要:
A method and system for automated view planning for cardiac magnetic resonance imaging (MRI) acquisition is disclosed. The method and system automatically generate a full scan prescription using a single 3D MRI volume. The left ventricle (LV) is segmented in the 3D MRI volume. Cardiac landmarks are detected in the automatically prescribed slices. A full scan prescription, including a short axis stack and 2-chamber, 3-chamber, and 4-chamber views, is automatically generated based on cardiac anchors provided by the segmented left ventricle and the detected cardiac landmarks in the 3D MRI volume.
摘要:
A method and system for non-invasive patient-specific assessment of coronary artery disease is disclosed. An anatomical model of a coronary artery is generated from medical image data. A velocity of blood in the coronary artery is estimated based on a spatio-temporal representation of contrast agent propagation in the medical image data. Blood flow is simulated in the anatomical model of the coronary artery using a computational fluid dynamics (CFD) simulation using the estimated velocity of the blood in the coronary artery as a boundary condition.
摘要:
A method for downsampling fluoroscopic images and enhancing guidewire visibility during coronary angioplasty includes providing a first digitized image, filtering the image with one or more steerable filters of different angular orientations, assigning a weight W and orientation O for each pixel based on the filter response for each pixel, wherein each pixel weight is assigned to a function of a maximum filter response magnitude and the pixel orientation is calculated from the angle producing the maximum filter response if the magnitude is greater than zero, wherein guidewire pixels have a higher weight than non-guidewire pixels, and downsampling the orientation and weights to calculate a second image of half the resolution of the first image, wherein the downsampling accounts for the orientation and higher weight assigned to the guidewire pixels.
摘要:
A method and system for modeling the pulmonary trunk in 4D image data, such as 4D CT data, and model-based percutaneous pulmonary valve implantation (PPVI) intervention is disclosed. A patient-specific dynamic pulmonary trunk data is generated from 4D image data of a patient. The patient is automatically classified as suitable for PPVI intervention or not suitable for PPVI intervention based on the generated patient-specific dynamic pulmonary trunk model.
摘要:
A detection framework that matches anatomical structures using appearance and shape is disclosed. A training set of images are used in which object shapes or structures are annotated in the images. A second training set of images represents negative examples for such shapes and structures, i.e., images containing no such objects or structures. A classification algorithm trained on the training sets is used to detect a structure at its location. The structure is matched to a counterpart in the training set that can provide details about the structure's shape and appearance.