Abstract:
This invention addresses implements a range of interesting technologies into a single block. Each DSP CPU has a streaming engine. The streaming engines include: a SE to L2 interface that can request 512 bits/cycle from L2; a loose binding between SE and L2 interface, to allow a single stream to peak at 1024 bits/cycle; one-way coherence where the SE sees all earlier writes cached in system, but not writes that occur after stream opens; full protection against single-bit data errors within its internal storage via single-bit parity with semi-automatic restart on parity error.
Abstract:
The vector data path is divided into smaller vector lanes. A register such as a memory mapped control register stores a vector lane number (VLX) indicating the number of vector lanes to be powered. A decoder converts this VLX into a vector lane control word, each bit controlling the ON of OFF state of the corresponding vector lane. This number of contiguous least significant vector lanes are powered. In the preferred embodiment the stored data VLX indicates that 2VLX contiguous least significant vector lanes are to be powered. Thus the number of vector lanes powered is limited to an integral power of 2. This manner of coding produces a very compact controlling bit field while obtaining substantially all the power saving advantage of individually controlling the power of all vector lanes.
Abstract:
The invention allows a processor to maintain a fixed instruction width regardless of the width of the constants needed. The constant extension solves the problem of having variable length opcodes to accommodate longer constants. The invention allows the architecture to have a fixed width, regardless of the width of the constants specified, which simplify instruction decoding. Constant widths can be variable and extend beyond the fixed processor instruction width.
Abstract:
A predication method for vector processors that minimizes the use of embedded predicate fields in most instructions by using separate condition code extensions. Dedicated predicate registers provide fine grain predication of vector instructions where each bit of a predicate register controls 8 bit of the vector data.