Abstract:
This invention is a bus communication protocol. A master device stores bus credits. The master device may transmit a bus transaction only if it holds sufficient number and type of bus credits. Upon transmission, the master device decrements the number of stored bus credits. The bus credits correspond to resources on a slave device for receiving bus transactions. The slave device must receive the bus transaction if accompanied by the proper credits. The slave device services the transaction. The slave device then transmits a credit return. The master device adds the corresponding number and types of credits to the stored amount. The slave device is ready to accept another bus transaction and the master device is re-enabled to initiate the bus transaction. In many types of interactions a bus agent may act as both master and slave depending upon the state of the process.
Abstract:
This invention is data processing apparatus and method. Data is protecting from corruption using an error correction code by generating an error correction code corresponding to the data. In this invention the data and the corresponding error correction code are carried forward to another set of registers without regenerating the error correction code or using the error correction code for error detection or correction. Only later are error correction detection and correction actions taken. The differing data/error correction code registers may be in differing pipeline phases in the data processing apparatus. This invention forwards the error correction code with the data through the entire datapath that carries the data. This invention provides error protection to the whole datapath without requiring extensive hardware or additional time.
Abstract:
Techniques related to executing a plurality of instructions by a processor comprising receiving a first instruction configured to cause the processor to output a first data value to a first address in a first data cache, outputting, by the processor, the first data value to a second address in a second data cache, receiving a second instruction configured to cause a streaming engine associated with the processor to prefetch data from the first data cache, determining that the first data value has not been outputted from the second data cache to the first data cache, stalling execution of the second instruction, receiving an indication, from the second data cache, that the first data value has been output from the second data cache to the first data cache, and resuming execution of the second instruction based on the received indication.
Abstract:
This invention addresses implements a range of interesting technologies into a single block. Each DSP CPU has a streaming engine. The streaming engines include: a SE to L2 interface that can request 512 bits/cycle from L2; a loose binding between SE and L2 interface, to allow a single stream to peak at 1024 bits/cycle; one-way coherence where the SE sees all earlier writes cached in system, but not writes that occur after stream opens; full protection against single-bit data errors within its internal storage via single-bit parity with semi-automatic restart on parity error.
Abstract:
In an embodiment of the invention, an integrated circuit includes a pipelined memory array and a memory control circuit. The pipelined memory array contains a plurality of memory banks. Based partially on the read access time information of a memory bank, the memory control circuit is configured to select the number of clock cycles used during read latency.
Abstract:
This invention is a bus communication protocol. A master device stores bus credits. The master device may transmit a bus transaction only if it holds sufficient number and type of bus credits. Upon transmission, the master device decrements the number of stored bus credits. The bus credits correspond to resources on a slave device for receiving bus transactions. The slave device must receive the bus transaction if accompanied by the proper credits. The slave device services the transaction. The slave device then transmits a credit return. The master device adds the corresponding number and types of credits to the stored amount. The slave device is ready to accept another bus transaction and the master device is re-enabled to initiate the bus transaction. In many types of interactions a bus agent may act as both master and slave depending upon the state of the process.
Abstract:
This invention is a bus communication protocol. A master device stores bus credits. The master device may transmit a bus transaction only if it holds sufficient number and type of bus credits. Upon transmission, the master device decrements the number of stored bus credits. The bus credits correspond to resources on a slave device for receiving bus transactions. The slave device must receive the bus transaction if accompanied by the proper credits. The slave device services the transaction. The slave device then transmits a credit return. The master device adds the corresponding number and types of credits to the stored amount. The slave device is ready to accept another bus transaction and the master device is re-enabled to initiate the bus transaction. In many types of interactions a bus agent may act as both master and slave depending upon the state of the process.
Abstract:
This invention is a bus communication protocol. A master device stores bus credits. The master device may transmit a bus transaction only if it holds sufficient number and type of bus credits. Upon transmission, the master device decrements the number of stored bus credits. The bus credits correspond to resources on a slave device for receiving bus transactions. The slave device must receive the bus transaction if accompanied by the proper credits. The slave device services the transaction. The slave device then transmits a credit return. The master device adds the corresponding number and types of credits to the stored amount. The slave device is ready to accept another bus transaction and the master device is re-enabled to initiate the bus transaction. In many types of interactions a bus agent may act as both master and slave depending upon the state of the process.
Abstract:
This invention is a bus communication protocol. A master device stores bus credits. The master device may transmit a bus transaction only if it holds sufficient number and type of bus credits. Upon transmission, the master device decrements the number of stored bus credits. The bus credits correspond to resources on a slave device for receiving bus transactions. The slave device must receive the bus transaction if accompanied by the proper credits. The slave device services the transaction. The slave device then transmits a credit return. The master device adds the corresponding number and types of credits to the stored amount. The slave device is ready to accept another bus transaction and the master device is re-enabled to initiate the bus transaction. In many types of interactions a bus agent may act as both master and slave depending upon the state of the process.
Abstract:
The Multicore Bus Architecture (MBA) protocol includes a novel technique of sharing the same physical channel for all transaction types. Two channels, the Transaction Attribute Channel (TAC) and the Transaction Data Channel (TDC) are used. The attribute channel transmits bus transaction attribute information optionally including a transaction type signal, a transaction ID, a valid signal, a bus agent ID signal, an address signal, a transaction size signal, a credit spend signal and a credit return signal. The data channel connected a data subset of the signal lines of the bus separate from the attribute subset of signal lines the bus. The data channel optionally transmits a data valid signal, a transaction ID signal, a bus agent ID signal and a last data signal to mark the last data of a current bus transaction.