摘要:
The present invention provides a process for producing a composite of metal sulfide and metal oxide obtained by dispersing a metal sulfide, which is nickel sulfide, copper sulfide, iron sulfide or a mixture thereof, in a metal salt-containing aqueous solution, and depositing metal salt on the metal sulfide by drying the aqueous solution; and heat-treating the metal sulfide comprising a metal salt deposited thereon at 400 to 900° C. in a sulfur-containing atmosphere. Also disclosed is a composite obtained by the aforementioned process, comprising a metal sulfide having a surface partially covered with a metal oxide. The composite of the present invention has improved cycle characteristics while maintaining a high charge/discharge capacity and excellent electrical conductivity inherently possessed by metal sulfide, which is usable as a material having a high theoretical capacity and excellent electrical conductivity when used as a positive-electrode material for a lithium secondary battery.
摘要:
Provided is a negative-electrode active material for an electricity storage device, comprising: at least one kind of inorganic material selected from Si, Sn, Al, an alloy comprising any one of Si, Sn, and Al, and graphite; and an oxide material comprising at least one of P2O5 and B2O3.
摘要翻译:本发明提供一种蓄电装置用负极活性物质,其特征在于,包括选自Si,Sn,Al,Si,Sn,Al中任一种的合金和石墨中的至少一种无机材料, 以及包含P 2 O 5和B 2 O 3中的至少一种的氧化物材料。
摘要:
The present invention provides a production process of a metal sulfide, which includes placing a metal component and sulfur in a conductive container, and applying a pulsed direct current to the container in a non-oxidizing atmosphere to cause the metal component to react with sulfur, and also provides a metal sulfide obtained by the process and represented by a composition formula: MSx, wherein M is at least one member selected from the group consisting of Ni, Cu, Fe, and Co, and 1
摘要:
A copper base rolled alloy has a copper base alloy composition containing 0.05 percent by mass or more, and 10 percent by mass or less of at least one type of element selected from Be, Mg, Al, Si, P, Ti, Cr, Mn, Fe, Co, Ni, Zr and Sn, wherein the X-ray diffraction intensity ratio I(111)/I(200) where I(hkl) is the X-ray diffraction intensity from (hkl)plane measured with respect to a rolled surface is 2.0 or more.
摘要:
Provided is a method for mass manufacturing, at low cost, of a fiber positive electrode for a lithium secondary battery, which has excellent charge/discharge cycle characteristics, and which is capable of charging/discharging with high current density, and a main active material of which is a lithium-doped transition metal oxide. The method includes the steps of: (a) forming a tubular coating of either a transition metal oxide or a transition metal hydroxide on a carbon fiber current collector; and (b) performing, in a lithium ion containing solution in a sealed system under presence of an oxidant or a reductant, heat treatment at 100 to 250° C. on the carbon fiber current collector, on which the tubular coating of either the transition metal oxide or the transition metal hydroxide is formed, to obtain a coating of a lithium-doped transition metal oxide on the carbon fiber current collector. Further provided are: a fiber negative electrode for a lithium secondary battery, which has high current density, high energy density, and excellent charge/discharge cycle characteristics, and which can be fabricated in a relatively easy manner; and a method for fabricating the fiber negative electrode. The fiber negative electrode for a lithium secondary battery includes: (c) a carbon fiber current collector; (d) an outer layer which is a tubular composite layer of a Sn oxide and MXOy formed on the carbon fiber current collector; and (e) an intermediate layer formed of a Sn alloy, which has a lithium occlusion capacity and which is present at an interface between the carbon fiber current collector and the outer layer. The method for fabricating the fiber negative electrode for a lithium secondary battery includes: forming a coating of one of Sn and a Sn alloy, and a coating of at least one kind of metal selected from the group consisting of Fe, Mo, Co, Ni, Cr, Cu, In, Sb, and Bi, on a carbon fiber current collector by an electroplating method; and then performing heat treatment on the carbon fiber current collector under a trace oxygen atmosphere at 350 to 650° C. Moreover, the lithium secondary battery includes: the fiber positive electrode and the fiber negative electrode fabricated in the above methods; and an electrolyte.
摘要:
A hydrogen storage alloy containing a phase of a chemical composition defined by a general formula A5·xB1+xC24: wherein in the general formula A5·xB1+xC24, A denotes one or more element(s) selected from rare earth elements; B denotes one or more element(s) selected from a group consisting of Mg, Ca, Sr, and Ba; C denotes one or more element(s) selected from a group consisting of Ni, Co, Mn, Al, Cr, Fe, Cu, Zn, Si, Sn, V, Nb, Ta, Ti, Zr, and Hf; and x denotes a numeral in a range from −0.1 to 0.8: and the phase has a crystal structure belonging to a space group of R-3m and having a length ratio of the c-axis to the a-axis of the lattice constant in a range of 11.5 to 12.5.
摘要:
The present invention provides a production process of a metal sulfide, which includes placing a metal component and sulfur in a conductive container, and applying a pulsed direct current to the container in a non-oxidizing atmosphere to cause the metal component to react with sulfur, and also provides a metal sulfide obtained by the process and represented by a composition formula: MSx, wherein M is at least one member selected from the group consisting of Ni, Cu, Fe, and Co, and 1
摘要:
An electrode substrate for a battery has nickel applied as a coat on the surface of a base constituted of crossing of a plurality of fibers including a core formed of synthetic resin and a coating of synthetic resin having a softening temperature lower than the softening temperature of the synthetic resin forming the core. The electrode substrate has the fibers of the base fusion-bonded at a cross point by heat treatment. The ratio of the coating occupying a II-II cross section of the fiber cross point is larger than the ratio of the coating occupying a fiber cross section (III-III cross section) at a site other than at the cross point.
摘要:
A flow of rolling with a combination of asymmetric rolling (S1) and skin pass rolling (S3) is shown. Differential-speed rolling is performed as the asymmetric rolling, and a winder temporarily winds a metal strip with a collapsed plate shape by traverse winding (loose winding which allows the metal strip is wound in a zigzag manner: S2). Then, the skin pass rolling is performed, and orderly winding is performed in a coil form (S4). As shown in the flow of rolling, tandem rolling may be performed by arranging two or more rolling mills side by side so that the asymmetric rolling and the skin pass rolling are continuously performed without the traverse winding (S2) in the mid course.
摘要:
The present invention provides a metal sheet rolling method of rolling a metal sheet with a pair of rolls, as well as a rolled sheet manufactured by the metal sheet rolling method. In the metal sheet rolling method, respective interfaces between the pair of rolls and the metal sheet have mutually different frictions. Additionally at least one of the interfaces may be lubricated by a procedure other than lubrication by coating of a liquid lubricant agent. Alternatively at least one of the interfaces may be subjected to surface treatment by a procedure other than lubrication, or otherwise the pair of rolls may be made of mutually different materials.