Abstract:
An endoscopic tissue anchor deployment device includes a handle, an elongated shaft defining an internal lumen, and an end effector attached to the distal end of the elongated shaft. A tissue anchor catheter is removably inserted through the lumen of the elongated shaft, the catheter having a tissue anchor assembly that is deployable from its distal end. The handle may include a pin and track assembly that define a series of handle actuation steps corresponding to deployment steps for the deployment device end effector and the tissue anchor catheter. In some embodiments, the handle includes a catheter stop member that prevents movement of the tissue anchor catheter under certain circumstances, and a handle stop member that prevents actuation of the handle under certain circumstances.
Abstract:
Apparatus and methods for optimizing anchoring force are described herein. In securing tissue folds, over-compression of the tissue directly underlying the anchors is avoided by utilizing tissue anchors having expandable arms configured to minimize contact area between the anchor and tissue. When the anchor is in its expanded configuration, a load is applied to the anchor until it is optimally configured to accommodate a range of deflections while the anchor itself exerts a substantially constant force against the tissue. Various devices, e.g., stops, spring members, fuses, strain gauges, etc., can be used to indicate when the anchor has been deflected to a predetermined level within the optimal range. Moreover, other factors to affect the anchor characteristics include, e.g., varying the number of arms or struts of the anchor, positioning of the arms, configuration of the arms, the length of the collars, etc.
Abstract:
An endoscopic tissue anchor deployment device includes a handle, an elongated shaft defining an internal lumen, and an end effector attached to the distal end of the elongated shaft. A tissue anchor catheter is removably inserted through the lumen of the elongated shaft, the catheter having a tissue anchor assembly that is deployable from its distal end. The handle may include a pin and track assembly that define a series of handle actuation steps corresponding to deployment steps for the deployment device end effector and the tissue anchor catheter. In some embodiments, the handle includes a catheter stop member that prevents movement of the tissue anchor catheter under certain circumstances, and a handle stop member that prevents actuation of the handle under certain circumstances.
Abstract:
A surgical access device includes an access seal comprising an ultra gel elastomeric material formed of a mixture comprising a triblock copolymer and an oil. The access seal is adapted to be disposed relative to the abdominal wall. At least one access channel is formed through the elastomeric material between a proximal portion and a distal portion of the access seal. The access channel when operatively disposed forms at least a portion of a working channel between a location external to the abdominal wall and a location internal to the abdominal wall. The elastomeric material of the access seal is adapted to conform to a surface of an instrument inserted through the working channel to provide instrument access to the abdominal cavity while maintaining insufflation pressure in the abdominal cavity. The access channel is configured to self seal in the absence of any instrument extending through the access channel.
Abstract:
A method of reducing the cross-sectional area of a gastrointestinal lumen is provided wherein a delivery catheter having a needle, one or more anchors disposed within the needle and a suture coupled to each anchor is advanced into the gastrointestinal lumen, the needle extended through the tissue wall, and an anchor ejected from a distal tip of the needle through the tissue wall. The needle is then repositioned against an opposing tissue wall, another anchor deployed from the needle through the opposing tissue wall, and the tissue walls approximated by applying tension to the sutures.
Abstract:
Apparatus and methods are provided for forming a gastrointestinal tissue fold by engaging tissue at a first tissue contact point and moving the first tissue contact point from a position initially distal to, or in line with, a second tissue contact point to a position proximal of the second contact point, thereby forming the tissue fold, and extending an anchor assembly through the tissue fold from a vicinity of the second tissue contact point. Adjustable anchor assemblies; as well as anchor delivery systems, shape-lockable guides and methods for endoluminally performing medical procedures, such as gastric reduction, treatment of gastroesophageal reflux disease, resection of lesions, and treatment of bleeding sites; are also provided.
Abstract:
A surgical access device includes a single valve that forms a seal with the body wall and provides an access channel into a body cavity. The valve has properties for creating a zero seal in the absence of an instrument as well as an instrument seal with instruments having a full range of instrument diameter. The valve can include a gel and preferably an ultragel comprised of an elastomer and an oil providing elongation greater than 1000 percent and durometer less than 5 Shore A. The single valve can be used as a hand port where the instrument comprises the arm of a surgeon, thereby providing hand access into the cavity.A method for making the surgical access device includes the combining of a gelling agent with an oil, preferably in a molding process. A method for using the device includes steps for creating an opening with the instrument. In a particular process, an organ can be removed from the body cavity through the single valve to create an organ seal while the organ is addressed externally of the body cavity. The valve and method are particularly adapted for laparoscopic surgery wherein the abdominal cavity is insufflated with a gas thereby requiring the zero seal, the instrument seal, and the organ seal in various procedures.
Abstract:
Endoluminal instrument management systems are described herein which allow one or more operators to manage multiple different instruments utilized in endoluminal procedures. Responsibility for instrumentation management between one or more operators may be configured such that a first set of instruments is controlled by a primary operator and a second set of instruments is controlled by a secondary operator. The division of instrumentation may be facilitated by the use of separated instrumentation platforms or a single platform which separates each instrument for use by the primary operator. Such platforms may be configured as trays, instrument support arms, multi-instrument channels, as well as rigidized portions of instruments to facilitate its handling, among others.
Abstract:
A surgical access device includes a single valve forming a seal with the body wall and providing an access channel into a body cavity. The valve has properties for creating a zero-seal in the absence of an instrument and an instrument seal with instruments. The valve can include a gel comprised of an elastomer and oil providing elongation greater than 1000 percent and durometer less than 5 Shore A. The single valve can be used as a hand port where the instrument comprises the arm of a surgeon. A method for making the surgical access device includes combining a gelling agent with oil, preferably in a molding process. A method for using the device includes creating an opening with the instrument. An organ can be removed from the body cavity through the single valve to create an organ seal while the organ is addressed externally of the body cavity.
Abstract:
A tissue grasping apparatus includes a control member, an elongated shaft, and a tissue penetrating and grasping member attached to the distal end of the elongated shaft. An activation mechanism provides an user-operable connection between the control member and the tissue penetrating and grasping member. In an embodiment, the tissue penetrating and grasping member includes a rigid penetrating member that is rotatably attached to the distal end of the elongated shaft. In an embodiment, the activation mechanism includes a flexible drive wire attached to the penetrating member.