摘要:
An implantable lead is provided that comprises a lead body and a header assembly. The lead body has a distal end and a proximal end. The lead body is configured to be implanted in a patient. The header assembly is provided at the distal end of the lead body and includes an internal chamber and a tissue engaging end. An electrode is provided on the header assembly. The electrode is configured to deliver a stimulating pulse. A resonant inductor is located within the chamber in the header assembly. An electrically floating heat spreader is provided on the header assembly. The heat spreader is located proximate to the resonant inductor and is positioned on the header assembly to cover at least a portion of the resonant inductor. The heat spreader is thermally coupled to the resonant inductor to convey thermal energy away from the header assembly.
摘要:
A leadless intra-cardiac medical device (LIMD) includes multiple electrodes that allow for stimulation and sensing of the right ventricle (RV) and sensing of the right atrium (RA), even though it is entirely located in the RV. The LIMD includes a housing having a proximal end configured to engage local tissue in the local chamber and electrodes located at multiple locations along the housing. Sensing circuitry is configured to define a far field (FF) channel between a first combination of the electrodes to sense FF signals occurring in the adjacent chamber. The sensing circuitry is configured to define a near field (NF) channel between a second combination of the electrodes to sense NF signals occurring in the local chamber. A controller is configured to analyze the NF and FF signals to determine whether the NF and FF signals collectively indicate that a validated event of interest occurred in the adjacent chamber.
摘要:
An exemplary method includes delivering a cardiac pacing therapy that includes an atrio-ventricular delay and an interventricular delay, providing a paced propagation delay associated with delivery of a stimulus to a ventricle, delivering a stimulus to the ventricle, sensing an event in the other ventricle caused by the stimulus, determining an interventricular conduction delay value based on the delivering and the sensing, determining a interventricular delay (ΔSur) based on the interventricular conduction delay and the paced propagation delay and determining an atrio-ventricular delay based at least in part on the interventricular delay (ΔSur). Other exemplary methods, devices, systems, etc., are also disclosed.
摘要:
Techniques are provided for use with an implantable medical device for detecting and assessing heart failure and for controlling cardiac resynchronization therapy (CRT) based on impedance signals obtained using hybrid impedance configurations. The hybrid configurations exploit right atrial (RA)-based impedance measurement vectors and/or left ventricular (LV)-based impedance measurement vectors. In one example, current is injected between the device case and a ring electrode in the right ventricle (RV) or RA. RA-based impedance values are measured along vectors between the device case and an RA electrode. LV-based impedance values are measured along vectors between the device case and one or more electrodes of the LV. Heart failure and other cardiac conditions are detected and tracked using the measured impedance values. CRT delay parameters are also optimized based impedance. In this manner, multiple hybrid impedance measurement configurations are exploited whereby different vectors are used to inject current and measure impedance.
摘要:
Techniques are provided for use with an implantable medical device for assessing stroke volume or related cardiac function parameters such as cardiac output based on impedance signals obtained using hybrid impedance configurations that exploit a multi-pole cardiac pacing/sensing lead implanted near the left ventricle. In one example, current is injected between a large and stable reference electrode and a ring electrode in the RV. The reference electrode may be, e.g., a coil electrode implanted within the superior vena cava (SVC). Impedance values are measured along a set of different sensing vectors between the reference electrode and each of the electrodes of the multi-pole LV lead. Stroke volume is then estimated and tracked within the patient using the impedance values. In this manner, a hybrid impedance detection configuration is exploited whereby one vector is used to inject current and other vectors are used to measure impedance.
摘要:
Techniques are described for generating diagnostic information to aid in determining whether cardiac ischemia within a patient is clinically actionable. In one example, a pacemaker or implantable cardioverter/defibrillator (ICD) detects information pertaining to arrhythmia precursors and to episodes of sustained arrhythmias, as well as information pertaining to episodes of cardiac ischemia. The implanted device then correlates the arrhythmia precursors and the sustained arrhythmias with the episodes of cardiac ischemia so as to generate diagnostics permitting a physician reviewing the diagnostics to determine whether the ischemia is clinically actionable. In some implementations, the diagnostics are instead generated by an external system based on raw data provided by the implanted device. In some implementations, the device itself determines whether the ischemia is clinically actionable and automatically controls therapy or generates warning signals accordingly.
摘要:
An exemplary method includes delivering a cardiac resynchronization therapy using an atrio-ventricular delay and an interventricular delay, monitoring patient activity, optimizing the atrio-ventricular delay and the interventricular delay for a plurality of patient activity states to generate a plurality of optimal atrio-ventricular delays and a plurality of optimal interventricular delays, storing the optimal atrio-ventricular delays and the optimal interventricular delays in association with corresponding patient activity states, detecting a change in patient activity, adjusting an atrial pacing rate in response to the detected change in patient activity based at least in part on a heart failure status and setting the atrio-ventricular delay and the interventricular delay, in response to the detected change in patient activity, using a stored optimal atrio-ventricular delay that corresponds to the patient activity and a stored optimal interventricular delay that corresponds to the patient activity. Other exemplary technologies are also disclosed.
摘要:
An exemplary method includes analyzing data from multiple parameters detected by an implantable cardiac device and determining an extent of heart failure (HF) progression. The parameters may include electrical synchrony, mechanical synchrony, and/or electromechanical delay (EMD). A change in a width of the native and/or paced QRS complex may provide a measure of electrical synchrony. Characterization of a delay between local cardiac impedance (CI) and global CI may provide a mechanical dyssynchrony index. A delay between the timing of a peak of the QRS complex and LV contraction (e.g., detected by SVC-CAN impedance) may provide a measure for EMD. Each of the parameters may be analyzed independently or collectively to assess HF progression. Based on the analysis, one or more pacing delays (e.g. AV/PV and/or VV) of the implantable cardiac device may be modified. Other exemplary methods, devices, systems, etc., are also disclosed.
摘要:
An exemplary method includes delivering a cardiac resynchronization therapy using an atrio-ventricular delay parameter and an interventricular delay parameter, measuring an atrio-ventricular conduction delay, measuring an interventricular conduction delay, assessing heart failure and/or cardiac resynchronization therapy performance based at least in part on the measured atrio-ventricular conduction delay and the measured interventricular conduction delay and determining at least one of an atrio-ventricular delay parameter value and an interventricular delay parameter value based at least in part on the measured atrio-ventricular conduction delay and the measured interventricular conduction delay. Other exemplary technologies are also disclosed.
摘要:
An implantable medical lead configured to reduce resonant currents in a resonating circuit during MRI scans and a method of manufacturing the same are disclosed herein. The method of manufacturing includes providing a medical lead comprising an electrical pathway from a tip electrode located at a distal end of the lead to a lead connector located at a proximal end and coupling a resonating circuit to the tip electrode such that the resonating circuit is in the electrical pathway for the tip electrode. Further, the method includes coupling a capacitive element to a proximal end of the resonating circuit. The capacitive element is configured to shunt at least part of an RF current induced on the electrical pathway into surrounding tissue or fluid and also works as a heat sink to spread the heat from the internal LC resonant circuit.