摘要:
A solid state image sensor in which the charge accumulation period of each picture element can be set at the same point of time. Additionally, the lenngth of the charge period can be set at will, thus providing a video signal picture in which all picture elements bear image information with the same time reference. Sensitivity of the solid state image senosr can be adjusted by setting the length of charge accumulation period. In the solid state image sensor, photodiodes are disposed as picture elements, and video signal is output in accordance with a charge which is light-generated within respective photodiodes. A series circuit of a switch and a capacitance element is connected in parallel with the photodiode. The switch is closed for at least the charge accumulation period during which charge is light-generated within the photodiode, and the video signal is obtained in accordance with level of charging of said capacitance element.
摘要:
The present invention relates to a sensor apparatus having a structure capable of obtaining digital values of signal components with a high accuracy using an A/D conversing circuit with the outputted digital value thereof having a small number of expressive bits. In the sensor apparatus, a voltage value corresponding to the amount of incident light to a photodiode is held by a holding circuit through an integrating circuit and a CDS circuit. Meanwhile, a voltage value corresponding to the amount of incident light to an adjacent photodiode is held by another holding circuit through an integrating circuit and a CDS circuit. The voltage values held by the respective different holding circuits are inputted to a subtracting circuit through different paths. The subtracting circuit outputs a voltage value corresponding to the difference between the two inputted voltage values. In an A/D converting section, the difference voltage outputted from the subtracting circuit is converted into a digital value.
摘要:
In a signal processing device of an embodiment, an integration circuit accumulates a charge from a photodiode in an integrating capacitor element, and outputs a voltage value according to the amount of charge. A comparator circuit, when the voltage value from the integration circuit has reached a reference value, outputs a saturation signal. A charge injection circuit, in response to the saturation signal, injects an opposite polarity of charge into the integrating capacitor element. A counter circuit performs counting based on the saturation signal. A holding circuit holds the voltage value from the integration circuit. An amplifier circuit outputs a voltage value that is K times (where K>1) larger than the voltage value held by the holding circuit. An A/D converter circuit sets a voltage value that is K times larger than the reference value as the maximum input voltage value, that is, a full-scale value, and outputs a digital value corresponding to the voltage value from the amplifier circuit.
摘要翻译:在实施例的信号处理装置中,积分电路从积分电容器元件中的光电二极管蓄积电荷,并输出与电荷量相对应的电压值。 比较电路当积分电路的电压值达到基准值时,输出饱和信号。 电荷注入电路响应于饱和信号,向积分电容器元件注入相反的电荷极性。 计数器电路根据饱和信号进行计数。 保持电路保持来自积分电路的电压值。 放大电路输出比保持电路保持的电压值大K倍(K> 1)的电压值。 A / D转换器电路将比参考值大K倍的电压值设置为最大输入电压值,即满量程值,并输出与放大器电路的电压值对应的数字值。
摘要:
A photodetector of a wide dynamic range of incident light amount detection and low temperature dependence is provided. A first signal processing unit 10m,n includes an integrating circuit 11, a first holding circuit 12, a comparing circuit 13, a second holding circuit 14, and a latching circuit 15. The integrating circuit 11 has a variable capacitor unit that is selectively set to a capacitance value among a plurality of capacitance values, accumulates charges, output from the photodiode, into the variable capacitor unit over an accumulating period that is in accordance with the capacitance value set at the variable capacitor unit, and outputs a voltage V1 that is in accordance with the amount of the accumulated charges. The comparing circuit 13 inputs the voltage V1 output from the integrating circuit 11, performs a quantitative comparison of the voltage V1 with a reference voltage Vref, outputs a compared signal S3 expressing the result of comparison, and, when the voltage V1 output from the integrating circuit 11 at the end of an accumulating period is less than the reference voltage Vref, instructs the first holding circuit 12 to hold the voltage.
摘要:
Two charge quantities (Q1,Q2) are output from respective pixels P (m,n) of the back-illuminated distance measuring sensor 1 as signals d′(m,n) having the distance information. Since the respective pixels P (m,n) output signals d′(m,n) responsive to the distance to an object H as micro distance measuring sensors, a distance image of the object can be obtained as an aggregate of distance information to respective points on the object H if reflection light from the object H is imaged on the pickup area 1B. If carriers generated at a deep portion in the semiconductor in response to incidence of near-infrared light for projection are led in a potential well provided in the vicinity of the carrier-generated position opposed to the light incident surface side, high-speed and accurate distance measurement is enabled.
摘要:
The present invention relates to a photo-detecting device having a structure which enables an increase of the number of pixels and advanced high density and further enables precise photo-detection. The photo-detecting device includes N photodiodes, N switches a common wire, an integrating circuit, a first substrate provided with the N photodiodes, and a second substrate provided with the N switches, common wire, and integrating circuit. The N photodiodes and N switches to be electrically connected to each other are electrically connected by bump-connecting the first substrate and the second substrate. In such a construction, a connection wire two-dimensionally laid out that electrically connects the N photodiodes and N switches is unnecessary, thereby shortening the wire path length (reduction of noise). In addition, when the first substrate provided with the N photodiodes are bump-connected to the second substrate provided with the remaining electronic devices, which enables integration of the photodiodes without any consideration for wire layout on the first substrate (high density of pixels).
摘要:
An amount of charges consonant with the intensity of the light entering photodiodes is generated, and the level of the charges is determined by a charge level determination circuit. Based on this determined charge level, a capacitance setting circuit sets a capacitance of an integrating capacitor unit in an integrating circuit. Thereafter, in the integrating circuit, the charges generated by the photodiodes are integrated in the integrating capacitor unit, and a voltage having a value consonant with the amount of the integrated charges is output. When background light is strong and the overall intensity of incident light is high, a comparatively large capacitance is set for the variable capacitor unit of the integrating circuit, and the intensity of the incident light is detected without saturation. When background light is weak and the overall intensity of incident light is low, a comparatively small capacitance is set for the variable capacitor unit of the integrating circuit, and the intensity of the incident light is detected at high sensitivity, regardless of the surrounding conditions.
摘要:
Photodetector 1 is equipped with photodiodes PDn, integrating circuits 10n, CDS circuits 20n, and hold circuits 30n. Each integrating circuit 10n includes an amplifier 11n, a capacitor C, and a switch SW. Photodiodes PDn are aligned on a first substrate 100. A differential pair input part (transistors T1 and T2) of amplifier 11n, capacitor C, etc., of each integrating circuit 10n are disposed on a second substrate 200. A drive part (transistors T5 and T6) of amplifier 11n, etc., of each integrating circuit 10n are disposed on a third substrate 300.
摘要:
An A/D conversion circuit 20 comprises a coupling capacitor C201, feedback capacitor C202, switch SW202, amplifier 201, comparison portion 202, capacitance control portion 203, and variable capacitance portions 210, 220, and 230. The variable capacitance portion 210 comprises capacitors C211 to C214 and switches SW211 to SW214. One end of each of the capacitors C211 to C214 is connected to the inverted input terminal of the amplifier 201, and the other end is connected, via the respective switches SW211 to SW214, to either the reference voltage Vref1 or to the common voltage Vcom.
摘要:
A signal current I1 that is output from output terminal of semiconductor position detection element is converted to a signal voltage V1 by a current/voltage conversion unit and a signal current I2 that is output from output terminal is converted to a signal voltage V2 by a current/voltage conversion unit. Signal voltages V1 and V2 are compared in magnitude by a comparison circuit and a comparison signal is output so that maximum signal Vmax and minimum signal Vmin are selected. In A/D conversion circuit, the A/D conversion range is set using maximum signal Vmax, and minimum signal Vmin is converted to a digital signal and output. The position of beam incidence on semiconductor position detection element is found by incidence position calculating unit using the comparison signal and digital signal.