Abstract:
A measuring cell of an ICR mass spectrometer and a method of operating a measuring cell of the ICR mass spectrometer. The method and system trap ions in a first compartment of the ICR measuring cell by generating an electric potential well in the direction of the magnetic field with a minimum of the electric potential well located inside the first compartment. The method and system excite cyclotron motion of the ions trapped in the first compartment. The method and system transfer at least a part of the excited ions from the first compartment to a second compartment of the ICR measuring cell by displacement of a position of the minimum of the electric potential well from the first compartment to the second compartment. The ions are transferred by displacing the position of the minimum of the electric potential well from the first compartment to the second compartment preferably over a period of time equal to or longer than a characteristic period of ion oscillations along the direction of the magnetic field in the electric potential well. The method and system detect ion cyclotron motion of at least a part of the ions in the second compartment.
Abstract:
An automated malware analysis method is disclosed which can perform receiving a first universal resource locator identifying a first intermediate network node, accessing the first intermediate network node to retrieve a first malware artifact file, storing the malware artifact file in a data storage device, analyzing the malware artifact file to identify a second universal resource locator within the malware artifact file, and accessing a second intermediate network node to retrieve a second malware artifact file.
Abstract:
A medical robot for use inside an MRI includes a horizontal motion assembly, a vertical motion assembly and a controller. The horizontal motion assembly and the vertical assembly each includes a motion joint, an ultrasonic motor operably connected to the motion joint and an encoder operably connected to the ultrasonic motor. The motor and encoder are positioned proximate to the joint of the respective horizontal motion assembly and vertical motion assembly. Each motor has a cross section positioned in one of the axial and sagittal plane of the MRI. A medical instrument assembly is operably connectable to one of the moving joint of the vertical motion assembly. The controller is operably connected to the horizontal motion joint and the vertical motion joint and it is adapted to be powered off when the magnetic resonance imager is being used to collect images.
Abstract:
A single trip multizone time progressive well treating method and apparatus that provides a means to progressively stimulate individual zones through a cased or open hole well bore. The operator can use pre-set timing devices to progressively treat each zone up the hole. At each zone the system automatically opens a sliding sleeve and closes a frangible flapper, at a preselected point in time. An adjustable preset timing device is installed in each zone to allow preplanned continual frac operations for all zones. An optional “Stand-Down-Mode” can be integrated into the timing system so that if pumping stops the timers go into a sleep mode until the pumping resumes. The apparatus can consist of three major components: a packer, a timing pressure device, and a sliding sleeve/isolation device. The packer may be removed.
Abstract:
A system has a pipe handling apparatus with an arm moving between a first position and a second position, a derrick having a window through which the pipe handling system delivers a pipe to a well head, and a header mounted in the window of the derrick. The header receives the arm of the pipe handling system when the arm is in the second position. An outside surface of the header suitably fits within the window of the derrick. An inside surface of the derrick suitably receives the arm. The inside surface resists an upward motion and a sideways motion of the arm. The header has a body that has a head and legs.
Abstract:
A measuring cell of an ICR mass spectrometer and a method of operating a measuring cell of the ICR mass spectrometer. The method and system trap ions in a first compartment of the ICR measuring cell by generating an electric potential well in the direction of the magnetic field with a minimum of the electric potential well located inside the first compartment. The method and system excite cyclotron motion of the ions trapped in the first compartment. The method and system transfer at least a part of the excited ions from the first compartment to a second compartment of the ICR measuring cell by displacement of a position of the minimum of the electric potential well from the first compartment to the second compartment. The ions are transferred by displacing the position of the minimum of the electric potential well from the first compartment to the second compartment preferably over a period of time equal to or longer than a characteristic period of ion oscillations along the direction of the magnetic field in the electric potential well. The method and system detect ion cyclotron motion of at least a part of the ions in the second compartment.
Abstract:
A system and method for detecting airborne agents. The system includes a semiconductor ultraviolet optical source configured to emit an ultraviolet light, a controller configured to generate a pseudo-random code for emission of the ultraviolet light modulated at the pseudo-random code, a telescope configured to focus the ultraviolet light to a distance from the source and to receive elastically backscattered signals and fluorescence signals from the distance, and a sensor configured to detect the elastically backscattered and fluorescence signals. The method generates a pseudo-random code and emits at least one wavelength of ultraviolet light modulated at the pseudo-random code, transmits the modulated ultraviolet light pulses to a distance from the source, receives elastically backscattered signals and fluorescence signals from the distance, and detects the elastically backscattered and fluorescence signals.
Abstract:
An active, smartpipe stand (apparatus and method) for feeding and receiving pipe in a horizontal orientation to and from a pipe handling apparatus has a first pipe-lifting mechanism, a second pipe-lifting mechanism, and a pipe-rotating mechanism positioned between the first and second pipe-lifting mechanisms. The bottom of the first pipe-lifting mechanism is connected to the skid of the pipe handling apparatus. The bottom of the second pipe-lifting mechanism is connected to the skid of the pipe handling apparatus. The bottom of the pipe-rotating mechanism is connected to the skid of the pipe handling apparatus. Individual tubulars are unloaded, prepared, staged and sequenced, assembled and presented for delivery from horizontal to vertical. The pipe stand is positioned under the boom of the pipe handling apparatus when the apparatus is in the first position. The pipe stand extends within the skid structure.
Abstract:
A variable configuration articulated tracked vehicle comprises a chassis, a pair of right and left drive pulleys, a right and left planetary wheel, a right and left track, a right and left arm mechanism, and a right and left drive motor. The drive pulleys are rotatably attached to the chassis and each pair of drive pulleys is in the same plane. The planetary wheels are movable relative to the chassis such that each planetary wheel is in the same plane as its respective drive pulleys. The tracks extend around the pair of drive pulleys and the planetary wheel on the respective sides. The arm mechanisms connect the respective planetary wheel to the chassis. Each arm mechanism is rotatably attached to the chassis with a cam. The cam defines a motion path of one end of the arm whereby the motion of the planetary wheel provides a path for the planetary wheel such that the track path defined by the respective drive pulleys and the planetary wheel is a constant track length. The motors are each operably connected to the respective pair of drive pulleys for driving the track.
Abstract:
A method for fragmentation of analyte ions for mass spectroscopy and a system for mass spectroscopy. The method produces gas-phase analyte ions, produces gas-phase radical species separately from the analyte ions, and mixes the gas-phase analyte ions and the radical species at substantially atmospheric pressure conditions to produce fragment ions prior to introduction into a mass spectrometer. The system includes a gas-phase analyte ion source, a gas-phase radical species source separate from the gas-phase analyte ion source, a mixing region where the gas-phase analyte ions and the radical species are mixed at substantially atmospheric pressure to produce fragment ions of the analyte ions, a mass spectrometer having an entrance where at least a portion of the fragment ions are introduced into a vacuum of the mass spectrometer, and a detector in the mass spectrometer which determines a mass to charge ratio analysis of the fragment ions.