Abstract:
Improvements are provided in reaction vessel construction used in the growth of diamond by the process disclosed in U.S. Pat. No. 3,297,407 -- Wentorf, Jr. In assembly of the reaction vessel of this invention, the plug of catalyst-solvent material is disposed between the source of carbon and the diamond seed material as in the Wentorf, Jr. patent and, in addition, the diamond seed material is separated from the catalyst-solvent plug by means for isolating the diamond seed material from the catalyst-solvent material until after the latter has become saturated with carbon from the source of carbon. In addition, preferably the under surface of the plug of catalyst-solvent metal is covered with means for suppressing diamond nucleation. The nucleation suppressing means is usually in the form of a disc and may completely cover the underside of the catalyst-solvent plug or may have a hole therethrough in juxtaposition to the diamond seed/isolating means combination(s). When both the isolating means and the nucleation suppressing means are employed, capability is provided for simultaneously preventing dissolution of the diamond seed and suppressing spurious diamond nucleation.
Abstract:
Diamond crystals of controlled impurity content and/or impurity distribution and reaction vessel configurations for the production thereof are described. Combinations of "dopant," "getter" and "compensator" materials are employed to produce gem stones of unusual color patterns, or zoned coloration, using specific reaction vessel configurations.
Abstract:
A METHOD OF MANUFACTURING DIAMOND FROM GRAPHITE IN A HYDROGEN FREE ENVIRONMENT IS DISCLOSED IN WHICH A REACTION VESSEL IS FIRST FORMED FROM AN ANHYDROGENOUS MATERIAL. A CHARGE OF GRAPHITE AND A CARBON SOLVENT IS PLACED IN THE REACTION VESSEL AND THE REACTION VESSEL IS PLACED IN THE REACTION CHAMBER. A PLUNGER IS PLACED IN THE REACTION CHAMBER TO GENERATE HIGH PRESSURES THEREIN, AND THE RELATIVELY MOVING SURFACES BETWEEN THE REACTION CHAMBER AND THE PLUNGER ARE LUBRICATED WITH AN ANHYDROGENOUS LUBRICANT. THE TEMPERATURE AND PRESSURE IN THE REACTION CHAMBER ARE THEN RAISED UNTIL THE CONDITIONS IN THE REACTION CHAMBER ARE ABOVE THE DIAMOND-GRAPHITE EQUILIBRIUM LINE OF THE CARBON PHASE DIAGRAM AND THESE PRESSURE AND TEMPERATURE CONDITIONS ARE MAINTAINED FOR A PREDETERMINED TIME PERIOD UNTIL AT LEAST A PORTION OF THE GRAPHITE IN THE CHARGE IS CONVERTED TO DIAMOND.
Abstract:
Synthetic diamonds are produced by subjecting carbonaceous material to heat and pressure in the presence of a metallic solvent having projecting portions.
Abstract:
In accordance with the present invention, there is provided a process for producing hydrogen and graphitic carbon from a hydrocarbon gas comprising: contacting at a temperature between 600° C. and 1000° C. the catalyst with the hydrocarbon gas to catalytically convert at least a portion of the hydrocarbon gas to hydrogen and graphitic carbon, wherein the catalyst is a low grade iron oxide.
Abstract:
A polycrystalline diamond structure comprises a first region and a second region adjacent the first region, the second region being bonded to the first region by intergrowth of diamond grains. The first region comprises a plurality of alternating strata or layers, each or one or more strata or layers in the first region having a thickness in the range of around 5 to 300 microns. The polycrystalline diamond (PCD) structure has a diamond content of at most about 95 percent of the volume of the PCD material, a binder content of at least about 5 percent of the volume of the PCD material, and one or more of the layers or strata in the first region comprise and/or the second region comprises diamond grains having a mean diamond grain contiguity of greater than about 60 percent and a standard deviation of less than about 2.2 percent. There is also disclosed a method of making such a polycrystalline diamond structure.
Abstract:
Nano polycrystalline diamond is composed of carbon, an element of different type which is an element other than carbon and is added to be dispersed in carbon at an atomic level, and an inevitable impurity. The polycrystalline diamond has a crystal grain size not greater than 500 nm. The polycrystalline diamond can be fabricated by subjecting graphite in which the element of different type which is an element other than carbon has been added to be dispersed in carbon at an atomic level to heat treatment within high-pressure press equipment.