Abstract:
Superabrasive tools and methods for the making thereof are disclosed and described. In one aspect, superabrasive particles are chemically bonded to a matrix support material according to a predetermined pattern by a braze alloy. The brazing alloy may be provided as a powder, thin sheet, or sheet of amorphous alloy. A template having a plurality of apertures arranged in a predetermined pattern may be used to place the superabrasive particles on a given substrate or matrix support material.
Abstract:
A tip for a degradation tool, the tip comprising a PCD structure (20) joined to a cemented carbide substrate (30); the PCD structure comprising a plurality of strata (24, 25) arranged so that adjacent strata have alternating compressive and tensile stress states, adjacent strata comprising different PCD grades and being directly bonded to each other by inter-growth of diamond grains; each stratum having a mean thickness of at most 500 microns; the PCD structure defining a working end including a rounded conical apex (22) having a radius of curvature of 1.3 mm to 4 mm.
Abstract:
A pick tool for degrading asphalt or rock, comprising a PCD element; the PCD element comprising a PCD structure (20) bonded to a cemented carbide support body (30) at an interface; the PCD structure comprising a first region (24) and a second region (25) adjacent the first region, the second region bonded to the first region by intergrowth of diamond grains; the first region (24) comprising a plurality of alternating strata (24c, 24t), each stratum having a thickness in the range of about 30 to 300 microns; the second region comprising a plurality of strata (25a, 25b), one or more strata in the second region (25a) having a thickness greater than the thicknesses of the individual strata in the first region (24c, 24t), wherein the alternating strata in the first region (24) comprise first strata alternating with second strata, the first strata being in a state of residual compressive stress and the second strata being in a state of residual tensile stress.
Abstract:
The invention relates to a method for manufacture of diamond, the method including the steps of providing a first coating of solvent metal or solvent metal alloy on a diamond seed to create a coated diamond seed, situating the coated diamond seed adjacent a catalyst system comprising a solvent metal and/or a source of carbon, and subjecting the coated diamond seed and catalyst system to increased temperature wherein the melting point of the first coating is at least 20 deg C. below that of the catalyst system. The invention further relates to a compact comprising a plurality of diamond seeds wherein at least one seed includes a first coating comprising a solvent metal and/or solvent metal based alloy, the compact further comprising a catalyst system comprising a solvent metal and/or a source of carbon wherein the melting point of the first coating is at least 20 deg C. below that of the catalyst system.
Abstract:
A polycrystalline diamond structure comprises a first region and a second region adjacent the first region, the second region being bonded to the first region by intergrowth of diamond grains. The first region comprises a plurality of alternating strata or layers (21), (22), each or one or more strata or layers in the first region having a thickness in the range of around 5 to 300 microns. The polycrystalline diamond (PCD) structure has a diamond content of at most about 95 percent of the volume of the PCD material, a binder content of at least about 5 percent of the volume of the PCD material, and one or more of the layers or strata in the first region comprise and/or the second region comprises diamond grains having a mean diamond grain contiguity of greater than about 60 percent and a standard deviation of less than about 2.2 percent. There is also disclosed a method of making such a poly crystalline diamond structure.
Abstract:
A multichamber pressure-increasing device is comprised of a plurality of chambers disposed in series one inside the other, wherein the innermost chamber is configured so as to place objects or samples therein to subject them to ultra-high pressures. An external hydraulic pump pumps fluid into the outermost chamber while a plurality of elemental hydraulic motor pump systems (EHMPS) are mounted in each chamber for increasing the pressure from one chamber to the next one disposed more to the interior of the device through an iterative process, each EHMPS consisting of two cylinder-piston assemblies operatively joined together in such a way that both pistons extend or retract simultaneously within their respective cylinders, the motor part driving the pump part as pressurized fluid admitted into the motor cylinder is subsequently discharged so fluid admitted into the pumping part cylinder is compressed therein and impelled at a higher pressure into the succeeding chamber.
Abstract:
A superabrasive material and method of making the superabrasive material are provided. The superabrasive material may comprise a superabrasive crystal having an irregular surface. The superabrasive material further comprises a plurality of structure defects within the superabrasive crystal. The plurality of structure defects may cause micro-chipping when used as grinding materials.
Abstract:
A tip for a degradation tool, the tip comprising a PCD structure (20) joined to a cemented carbide substrate (30); the PCD structure comprising a plurality of strata (24, 25) arranged so that adjacent strata have alternating compressive and tensile stress states, adjacent strata comprising different PCD grades and being directly bonded to each other by inter-growth of diamond grains; each stratum having a mean thickness of at most 500 microns; the PCD structure defining a working end including a rounded conical apex (22) having a radius of curvature of 1.3 mm to 4 mm.
Abstract:
A superabrasive material and method of making the superabrasive material are provided. The superabrasive material may comprise a core and an outgrown region. The core may have a single crystal structure. The outgrown region may also contain a single crystal. The single crystal may extend outwards from the core. The outgrown region may have a lower toughness index than that of the core.
Abstract:
Disclosed herein is an apparatus and method for growing a diamond. The apparatus for growing a diamond comprises: a reaction cell that is configured to grow the diamond therein; a main heater including a main heating surface that is arranged along a first inner surface of the reaction cell; and a sub-heater including a sub-heating surface that is arranged along a second inner surface of the reaction cell, the second inner surface being non-parallel with the first inner surface.