Abstract:
An assembly (10) for location around a wheel rim (32) comprises an annular support band (12) being formed of a relatively inextensible material. The support band (12) is split at at least one circumferential location to define a pair of opposed ends (16, 18). Adjustment means (24, 26, 28) are operably connected to said opposed ends (16, 18) for enabling adjustment of the diameter of the support band (12), and spacing means (14) depend from the radially inner face (34) of the support band (12). The spacing means (14) is formed from a relatively non-compressible material and, in use, is seated upon the wheel rim (32) to maintain the support band (12) in a spaced apart relationship with the wheel rim (32). The assembly may be adapted for use as a runflat assembly or as a beadlock assembly.
Abstract:
A tire apparatus for driving a vehicle is provided. The tire apparatus allows the vehicle to be driven during periods of both low tire pressure and normal tire pressure. The tire apparatus has a tire that has a tread section. The tire has a pair of side walls that are located adjacent to the tread section. A first bead is located at an end of one of the side walls, and a second bead is located at an end of the other side wall. A wheel is also present that has a rim with a first bead seat and a second bead seat. The wheel is configured for attachment to the vehicle. The wheel has a support member for engaging the tire during periods of low tire pressure. At least one of the first and second bead seats has a plurality of friction members to prevent relative rotational movement between the tire and the rim.
Abstract:
A vehicle wheel, comprising a rim, a disc, a tire defining with the rim a circumferential cavity C, and at least one resonator suitable for attenuating a natural resonant frequency of said cavity, said wheel also comprising a safety support, for supporting the tread of this tire from the inside in the event of loss of inflation pressure, said support providing at least one of the walls of said resonator. The invention also provides for the safety support comprising resonators.
Abstract:
A tire assembly (200) having runflat capability comprises a tire (202) mounted to a rim (203) to provide a tire cavity (204) defined by a carcass circumferential inner surface (246), two sidewall inner surfaces (248A,248B) and the rim. The tire assembly (200) is characterized by having a platform (206) disposed circumferentially around the rim within the tire cavity and one or more hoops (208A-208C) disposed within the tire cavity (204) between the platform (206) and the carcass circumferential inner surface (246) so that under normal inflation the one or more hoops do not contact either the carcass circumferential inner surface (246) or the sidewall inner surfaces (248A,248B), but below a first runflat inflation pressure, the one or more hoops (208A-208C) contact and support the carcass circumferential inner surface (246).
Abstract:
The present invention provides a unitary run flat tire (RFT) reinforcement using filament material that is formed into a relatively rigid shape. The reinforcement is insertable into a mold for an RFT support and can maintain the needed structural rigidity for such insertion. Further, the invention provides an RFT support that is molded and includes the RFT reinforcement. The invention also provides a wheel assembly including a tire, a rim, and an RFT support between the rim and the tire, where the support includes the RFT reinforcement. The RFT support can have a colored indicator formed or subsequently applied thereto to indicate one or more attributes of the support.
Abstract:
A processing mold is suitable for preparing a tire support. One processing mold that is particularly advantageous includes a processing mold having a first mold body opposing a second mold body, and the first and second mold bodies are aligned through a mandrel. In one embodiment, a first mold body includes a locking member suitable for locking the mandrel to the first body. In this embodiment, the mandrel is movable between the first and second mold bodies such that when a processing mold is opened, the first mold body and the mandrel can separate from the second mold body. A method of using a processing mold by aligning a first mold body and a second mold body through a mandrel and a method of releasing a tire support from a processing mold by locking a mandrel to a first mold body and separating the first and second mold bodies are also particularly advantageous.
Abstract:
A safety insert designed to be mounted in an assembly comprising a tire and a rim of a vehicle and device for detecting the bearing of the tire on an insert, so that the insert generates signals oriented parallel to the axis of rotation of the tire and rim assembly and so that the device detects and analyzes the vibrating signals of the chassis of the vehicle.
Abstract:
A vehicle tire includes an outer tire, the outer tire having an intermediate layer of breaker of woven fabrics, a bottom layer of breaker of woven fabrics, and two inward lips respectively extended along two ends thereof, and an annular tire support structure mounted in the outer tire and connected between the lips of the outer tire, the annular tire support structure being formed of a plurality of reinforcing bearing devices connected in series and fastened to the lips of the outer tire, the reinforcing bearing devices each formed of a smoothly arched left bearing member and a smoothly arched right bearing member hooked up with the left bearing member.
Abstract:
A method for detecting vibrations generated by the running of a tire on a safety insert, wherein a vibration signal is measured within a given frequency band and the measurement thus made is processed to detect a mode of resonance generated by this running. The energy of the signal measured by a sensor in two frequency bands, one being narrow and the other being wide, which are centered on the same line of the mode of resonance, is determined. The ratio of these two energies is compared with a given warning threshold.
Abstract:
A safety support for supporting the tread of a vehicle tire in case of theoss of inflation pressure of the tire has the shape of a Z. The base of the support is fixed to a wheel rim while the connector between the support base and the support top is oriented so as to join the base on a side thereof opposite that facing the vehicle to which the tire is mounted. The asymmetric shape of the support and its orientation produces improved stability upon intervention of the support.