Abstract:
A method and a display for elevator allocation evaluating are provided. When an elevator allocated to a hall call is selected by employing two different view points such as a real and a future call evaluation index, an elevator allocation reason and a balance between the two view points can be easily grasped. An elevator allocated to a hall call is evaluated on orthogonal coordinates in which the real call evaluation index and the future call evaluation index are defined as an X and a Y coordinate axis. Evaluation indexes of first to fourth elevator cars are evaluated by employing contour lines of a synthetic evaluation function, which is represented as the real and the future call evaluation index. A weight for allocating is displayed visually.
Abstract:
A perceived waiting time for a hall call to be answered by a car is determined as a constant times the square (46) of the summation (45) of remaining response time (39) and the amount of time that has expired since the call was registered (38). The time that may be perceived by a passenger to travel to the passenger's destination is determined as a constant times the square (51) of the distance between an estimated destination floor and the floor of the call and a constant times an estimated number of new hall stops and committed hall stops that each car will make (47). Perceived service time is (52) the sum of perceived wait time and perceived travel time. Constants are adjusted so that a long waiting time will yield a quick travel time. Assignment of calls to cars (60) is in accordance (61) with the smallest summation of square (59) of perceived service times for all waiting up calls and down calls.
Abstract:
The present invention discloses an extension to a prior-art genetic algorithm, with which the routing of elevators based on the calls given in an elevator system is formed. A new type of gene, a so-called run type gene, is connected to the chromosome of the genetic algorithm according to the invention, with which gene the desired speed profile for the elevator trip can be set. In this way e.g. an upper limit can be set for the acceleration or for the maximum travel speed of the elevator. By means of the run type gene a kinetic energy term is included in the optimization. The energy consumed by the system can thus be minimized more effectively by means of the algorithm, because the varying travel speeds of the elevators create more freedom of choice for the chromosomes of the algorithm.
Abstract:
An elevator group supervisory control apparatus is obtained which can achieve efficient group supervisory control while preventing or reducing the possibility of collision and the safe stopping of an upper car and a lower car in one and the same shaft as much as possible. The apparatus includes a hall destination floor registration device 4 that is installed in each hall and has a destination floor registration function and a function of providing a predictive indication of a response car for each destination floor, a zone setting section 12 that sets priority zones and a common zone for each of upper and lower cars, an entry determination section 13 that determines whether the upper and lower cars can come into the common zone, a safe waiting section 14 that makes the cars 20 wait safely in accordance with the determination result of the entry determination section 13, a shunting section 15 that makes each car 20 move to a shunting floor as required at the instant when each car finished its service, a confinement time prediction section 16 that predicts a confinement time due to safe waiting when each car is assigned to a destination call generated in a hall, an evaluation value calculation section 17 that evaluates a waiting time, the confinement time, etc., upon assignment of each car, and an assignment section 18 that determines a final assigned car on the basis of the calculation result of the evaluation value calculation section 17.
Abstract:
The present invention relates to a method for controlling the elevators of an elevator group in a building divided into zones comprising different floors in such manner that, at the passenger's departure floor, the elevators are given calls to floors beyond the zone limits of the departure zone. According to the invention, the aforesaid call is divided into two or more calls.
Abstract:
An elevator group control method for the allocation of calls, in which method a given service time of the elevator group is assigned a target value. The service time may be passenger waiting time, call time, traveling time, riding time or an average value of one of these quantities. The method aims at fulfilling the assigned target value in such a way that the energy consumption of the elevator system is minimized. Optimization is implemented using a model of the elevator system, by means of which the desired service time can be predicted. This prediction is utilized in a controller controlling the optimizer. This makes it possible to improve the construction and operation of the controller and optimizer so that the energy consumption of the elevator system can be reduced while the condition regarding the target service time is fulfilled at the same time.
Abstract:
An elevator operation system and apparatus reduce the round trip time of an elevator, by determining a target floor that corresponds to the destination floor requested by a passenger; and assigning the target floor to one of a plurality of elevators for service exclusively to the target floor.
Abstract:
An elevator car equalization computer program product includes software instructions for enabling a computer to perform predetermined operations, a computer readable medium bearing the software instructions, and a computer system including a processor and a memory. The predetermined operations include the steps of: (a) receiving at least one user input from at least one data input terminal; (b) determining a location of an originating demand unique to each of the user inputs; (c) determining a location of a destination demand unique to each of the user inputs; (d) calculating a total number of the user inputs received within a predetermined time interval; (e) determining whether the total number of user inputs is less than or more than a total number of available elevators; (f) assigning an elevator to each of the locations of the originating demand; and (g) forming temporary call response zones based upon the elevator assignments. The present system provides shorter average waits, transfer times, trip times, round trip times and equipment use.
Abstract:
The present invention provides a method and apparatus for use in elevator systems for assigning new hall calls to one of a plurality of available elevator cars. According to the invention, a call cost is calculated for each car for accepting the new hall call. The call cost is a function of the estimated time to the desired destination of the passenger requesting the new hall call and of the delay that other passengers who are using the elevator car will experience. In one embodiment, a destination is inferred for the passenger requesting the new hall call. In another embodiment, the passenger requesting the hall call may input a desired destination at the time the hall call request is made. The elevator system of the present invention allows for use of both standard up/down hall call entry devices and destination entry devices that allow a particular destination to be entered by a passenger at the time a hall call is requested.
Abstract:
The present invention provides a method and apparatus for use in elevator systems for assigning new hall calls to one of a plurality of available elevator cars. The method comprises calculating for each car a call cost for accepting the new hall call. The call cost is a function of the estimated time to the desired destination of the passenger requesting the new hall call and of the delay that other passengers who are using the elevator car will experience. In one embodiment, a destination is inferred for the passenger requesting the new hall call. In another embodiment, the passenger requesting the hall call may input a desired destination at the time the hall call request is made. The elevator system of the present invention allows for use of both standard up/down hall call entry devices and destination entry devices that allow a particular destination to be entered by a passenger at the time a hall call is requested.