Abstract:
The invention provides (1) a method of increasing the thermal stability of an oleaginous liquid containing a high surface area silica viscosifier therein by adding a water soluble biopolymer thereto; and (2) a drilling, completion, workover, or well servicing fluid comprising an oleaginous liquid, a water soluble biopolymer, and a high surface area silica viscosifier. The method and fluid may optionally contain a low molecular weight polar additive preferably having a molecular weight less than about 400 and containing one or more polar groups per molecule selected from the group consisting of hydroxyl, amino, and mixtures thereof.
Abstract:
The present invention relates to proppants which can be used to prop open subterranean formation fractions. Proppant formulations are further disclosed which use one or more proppants of the present invention. Methods to prop open subterranean formation fractions are further disclosed. In addition, other uses for the proppants of the present invention are further disclosed, as well as methods of making the proppants.
Abstract:
A method of treating a subterranean formation penetrated by a well bore including: (a) preparing a fracturing fluid containing a mixture resulting from: (I) providing a water-in-oil emulsion composition that includes: (i) 5% to 99% by weight of a water-in-oil emulsion polymer comprising a polymer or copolymer containing repeat units from an acrylamide monomer; (ii) 0.5% to 90% by weight of a carrier solvent; and (iii) 0 to 90% by weight of a fluidizing agent; and adding (iv) 0.1% to 10% by weight of one or more inorganic microparticles, where the total of all components is 100% by weight; and (II) adding the water-in-oil emulsion composition to water; and (b) contacting the subterranean formation with the fracturing fluid.
Abstract:
Invert emulsion compositions including an oleaginous, a non-oleaginous and an amine surfactant that are useful in the oil and gas well drilling art are disclosed. The amine surfactant is selected so that the invert emulsion can be converted form a water-in-oil type emulsion to a oil-in-water type emulsion upon the protonation of the amine surfactant. Deprotonation of the amine surfactant reverses the conversion. This solution also permits the conversion of oil-wet solids in the fluid into water-wet solids.
Abstract:
A method of treating a subterranean formation comprising the steps of providing a servicing fluid comprising carbon dioxide and a hydrocarbon blend, wherein the hydrocarbon blend comprises at least about 65% hydrocarbons having from six carbons (C6) to eleven carbons (C11); and placing the servicing fluid into the subterranean formation. A subterranean servicing fluid comprising carbon dioxide and a hydrocarbon blend wherein the hydrocarbon blend comprises and at least about 65% hydrocarbons having from six carbons (C6) to eleven carbons (C11).
Abstract:
Methods of treating a portion of a subterranean formation comprising: providing partitioned, coated particulates that comprise particulates, an adhesive substance, and a partitioning agent, and wherein the adhesive substance comprises an aqueous tackifying agent or a silyl modified polyamide; substantially slurrying the partitioned, coated particulates in a treatment fluid to create a particulate slurry; and, placing the particulate slurry into the portion of the subterranean formation.
Abstract:
The present invention relates to proppants which can be used to prop open subterranean formation fractions. Proppant formulations are further disclosed which use one or more proppants of the present invention. Methods to prop open subterranean formation fractions are further disclosed. In addition, other uses for the proppants of the present invention are further disclosed, as well as methods of making the proppants.
Abstract:
Particulate compositions that comprise macro-particulates, and degradable particulates in an amount sufficient to reduce friction between the macro-particulates, the degradable particulates having a mean particle diameter of at least about 20 times smaller than the mean particle diameter of the macro-particulates are disclosed herein. Also disclosed are fluids that comprise a liquid component, and a particulate composition, the particulate composition comprising macro-particulates and degradable particulates having a mean particle diameter of at least about 20 times smaller than the mean particle diameter of the macro-particulates, wherein the degradable particulates are present in the particulate composition in an amount sufficient to reduce friction between the macro-particulates. Methods of using the particulate compositions and fluids are also disclosed.
Abstract:
Invert emulsion compositions including an oleaginous, a non-oleaginous and an amine surfactant that are useful in the oil and gas well drilling art are disclosed. The amine surfactant is selected so that the invert emulsion can be converted form a water-in-oil type emulsion to a oil-in-water type emulsion upon the protonation of the amine surfactant. Deprotonation of the amine surfactant reverses the conversion. This solution also permits the conversion of oil-wet solids in the fluid into water-wet solids.
Abstract:
The present invention provides methods of treating a portion of a subterranean formation, one of which includes: providing a gelled nonaqueous treatment fluid that comprises a nonaqueous base fluid and a difunctional gelling agent that comprises a polyvalent metal salt of a bisorganophosphinic acid, a polyvalent metal salt of a bisorthophosphoric acid diester, and/or a polyvalent metal salt of a bisorganophosphonic acid monoester; and treating the portion of the subterranean formation. Methods of fracturing, providing some degree of sand control, cleaning a portion of a pipeline, treatment fluid compositions, and difunctional gelling agent compositions also are provided.