Abstract:
A structure, system and method for the in situ ballasting of solar panel ground support structures, the method, system and structures comprising the positioning of supporting posts or anchoring elements therefor within a peripherally enclosing frame, having an open top and preferably open bottom, on the ground at a final solar panel array supporting position. The supporting posts or anchoring elements therefor are vertically aligned and maintained in position relative to each other and a ballast material, such as concrete, is poured into the enclosing frame around the supporting posts or anchoring elements therefor in the final solar panel supporting position thereof with the ballast material being allowed to harden. A solar panel support structure is constructed with the solar panel support structure being ballasted, in final solar panel array position, in situ. Thereafter solar panels are placed on the ballasted support structure to provide the solar panel array.
Abstract:
The present invention involves a method and apparatus for depositing a silicon oxide onto a substrate from solution at low temperatures in a manner that produces homogeneous growth of the silicon oxide. The method generally comprises the following steps: (a) Chemically treating a substrate to activate it for growth of the silicon oxide. (b) Immersing the treated substrate into a bath with a reactive solution. (c) Regenerating the reactive solution to allow for continued growth of the silicon oxide. In another embodiment of the present invention, the apparatus includes a first container holding a reactive solution, a substrate on which the silicon oxide is deposited, a second container holding silica, and a means for adding silica to the reactive solution.
Abstract:
A structure, system and method for the in situ ballasting of solar panel ground support structures, the method, system and structures comprising the positioning of supporting posts or anchoring elements therefor within a peripherally enclosing frame constructed of removable interfitting plates, with the frame having an open top and preferably open bottom, on the ground at a final solar panel array supporting position. The supporting posts or anchoring elements therefor are vertically aligned and maintained in position relative to each other and a ballast material, such as concrete, is poured into the enclosing frame around the supporting posts or anchoring elements therefor in the final solar panel supporting position thereof with the ballast material being allowed to harden. A solar panel support structure is constructed with the solar panel support structure being ballasted, in final solar panel array position, in situ. Thereafter solar panels are placed on the ballasted support structure to provide the solar panel array.
Abstract:
A field effect transistor and a method for making the same. In one embodiment, the field effect transistor comprises a source; a drain; a gate; at least one carbon nanotube on the gate; and a dielectric layer that coats the gate and a portion of the at least one carbon nanotube, wherein the at least one carbon nanotube has an exposed portion that is not coated with the dielectric layer, and wherein the exposed portion is functionalized with at least one indicator molecule. In other embodiments, the field effect transistor is a biochem-FET
Abstract:
The present invention relates to coated fullerenes comprising a layer of at least one inorganic material covering at least a portion of at least one surface of a fullerene and methods for making. The present invention further relates to composites comprising the coated fullerenes of the present invention and further comprising polymers, ceramics and/or inorganic oxides. A coated fullerene interconnect device wherein at least two fullerenes are contacting each other to form a spontaneous interconnect is also disclosed as well as methods of making. In addition, dielectric films comprising the coated fullerenes of the present invention and methods of making are further disclosed.
Abstract:
The present invention relates to ferroxanes and a method of making wherein a ferroxane may be defined by the general formula [Fe(O)x(OH)y(O2CR)z]n wherein x, y and z may be any integer or fraction such that 2x+y+z=3 and n may be any integer. The ferroxanes may be doped with at least one other element other than iron. The present invention further relates to a ceramic made from the ferroxanes of the present invention and a method of making. The present invention still further relates to supported and unsupported membranes made from the ceramic of the present invention.
Abstract translation:本发明涉及铁氧烷及其制备方法,其中铁氧烷可以由通式[Fe(O)x(OH)y(O 2 CR)z] n定义,其中x,y和z可以是任何整数或分数 那2x + y + z = 3,n可以是任何整数。 铁氧烷可以掺杂有除铁以外的至少一种其它元素。 本发明还涉及由本发明的铁氧体制成的陶瓷及其制造方法。 本发明还涉及由本发明的陶瓷制成的负载和未负载的膜。
Abstract:
An animal shelter and food trough system houses animals in a shelter which can be opened for ventilation while also preventing buildup of feed and debris within the shelter. The system includes a structure having a roof and an open lateral side extending down from an edge of the roof. A trough is positioned to extend along the open lateral side laterally offset outside of the edge of the roof. A panel has an upper edge coupled to the structure. The panel is pivotable between an open position and a closed position. A lower edge of the panel extends to a position adjacent to or beyond a distal side of the trough relative to the structure when the panel is in the closed position.
Abstract:
The present invention relates to proppants which can be used to prop open subterranean formation fractions. Proppant formulations are further disclosed which use one or more proppants of the present invention. Methods to prop open subterranean formation fractions are further disclosed. In addition, other uses for the proppants of the present invention are further disclosed, as well as methods of making the proppants.
Abstract:
The present invention relates to proppants which can be used to prop open subterranean formation fractions. Proppant formulations are further disclosed which use one or more proppants of the present invention. Methods to prop open subterranean formation fractions are further disclosed. In addition, other uses for the proppants of the present invention are further disclosed, as well as methods of making the proppants.
Abstract:
The present invention relates to proppants which can be used to prop open subterranean formation fractions. Proppant formulations are further disclosed which use one or more proppants of the present invention. Methods to prop open subterranean formation fractions are further disclosed. In addition, other uses for the proppants of the present invention are further disclosed, as well as methods of making the proppants.