Abstract:
An integrated information processing system for geospatial information processing. The information processing system includes a scheduling module, an acquisition module, a production module, a distribution module, a geospatial data specification, and a geospatial media recorder. Each module incorporates a common object database management system. The scheduling module is configured for processing requests for media acquisition. The acquisition module is configured for acquiring visual, audio, textual, and geospatial entity information. The production module is configured for producing integrated digital media datasets and information. The distribution module is configured for distributing integrated digital media datasets and information. The geospatial data specification includes an object class which serves to provide geospatial referencing of an entity or object. The concatenated data attribute of geospatial data serves to geospatially reference entities or object in a video segment. The geospatial media recorder serves to encode geospatial data onto video frames at the time of video acquisition.
Abstract:
A device, method and system are provide which permits the methodology used to make the position determination to change dynamically in connection with achieving a position fix of a desired accuracy.
Abstract:
A GPS antenna is arranged such that it can easily receive satellite radio waves. An ATV vehicle equipped with a navigation system for measuring the position of the vehicle by receiving radio waves from an artificial satellite. A meter box is mounted to a steering handle of the ATV vehicle, and a GPS unit and a GPS antenna mounted inside the meter box. A second GPS antenna is mounted to a rear fender to enable diversity of reception.
Abstract:
Method and apparatus for locating position of a satellite signal receiver is described. In one example, pseudoranges are obtained that estimate the range of a satellite signal receiver to a plurality of satellites. An absolute time and a position are computed using the pseudoranges at a first time. The absolute time is then used to compute another position at a subsequent time. In another example, a plurality of states associated with a satellite signal receiver are estimated, where the plurality of states includes a time tag error state. A dynamic model is then formed relating the plurality of states, the dynamic model operative to compute position of the satellite signal receiver.
Abstract:
A system and method for executing user-definable events triggered through geolocational data describing zones of influence is described. One or more zones of influence are defined. Each zone of influence is described by stored geolocational data and forms a logically enclosed physical space. One or more user-definable events are associated with each zone of influence. Each user-definable event specifies a trigger condition based on the stored geolocational data for the associated zone of influence. A location of a user device is identified based on further geolocational data and at least one user-definable event is triggered when the location of the user device substantially correlates to the stored geolocational data for the trigger condition of the at least one user-definable event.
Abstract:
A system and method for executing user-definable events triggered through geolocational data describing zones of influence is described. One or more zones of influence are defined. Each zone of influence is described by stored geolocational data and forms a logically enclosed physical space. One or more user-definable events are associated with each zone of influence. Each user-definable event specifies a trigger condition based on the stored geolocational data for the associated zone of influence. A location of a user device is identified based on further geolocational data and at least one user-definable event is triggered when the location of the user device substantially correlates to the stored geolocational data for the trigger condition of the at least one user-definable event.
Abstract:
A privacy enhancement device for electronic device such as a cellular telephone. The privacy enhancement device may include a jammer which may produces false information, e.g. false information indicative of pseudo ranges. In addition, the navigation information used on the position detecting device may be locally stored versions of dynamically changing information. The navigation operation may be carried out using a Web service.
Abstract:
Several satellites serving as reference stations (S.sub.j) for a user revolve about the earth in different orbits. At least four reference stations must be within sight of a user station (N) at the same time. The user station measures the ranges to at least four reference stations by one-way ranging. From these ranges and the positions of the reference stations, which are transmitted as data words, the user station determines its position.To determine the positions of the reference stations, the ranges from the respective reference station to at least three ground stations (B.sub.i) are measured by two-way ranging. From these ranges and the known positions of the ground stations, the position of the reference station is obtained. The interrogation signals of all reference stations contain the same basic signal (K.sub.s), which represents a pseudorandom code. The reply signals of the ground stations contain differently coded signals (K.sub.Bi), so that the ground stations are identifiable with the aid of the codes assigned to them. If the interrogation and reply signals contain the times of transmission (t.sub.j) and arrival (t.sub.i), respectively, of the interrogation signal, and the signal transit times are measured, the clocks of the reference stations and of the ground stations can be synchronized.
Abstract:
Disclosed are techniques for wireless communication. In an aspect, a network entity determines a location of a target base station and a location of at least one reference device, determines an angle-of-arrival (AoA) measurement of one or more reference signals received by at least one antenna array of the target base station from the at least one reference device, determines an expected AoA between the at least one antenna array and the at least one reference device based on the location of the target base station and the location of the at least one reference device, and determines an orientation offset of the at least one antenna array based on a difference between the expected AoA and the AoA measurement.
Abstract:
Devices, systems, and methods for hardware-based time synchronization for heterogenous sensors are described. An example method includes generating a plurality of input trigger pulses having a nominal pulse-per-second (PPS) rate, generating, based on timing information derived from the plurality of input trigger pulses, a plurality of output trigger pulses, and transmitting the plurality of output trigger pulses to a sensor of a plurality of sensors, wherein a frequency of the plurality of output trigger pulses corresponds to a target operating frequency of the sensor, wherein, in a case that a navigation system coupled to the synchronization unit is functioning correctly, the plurality of input trigger pulses is generated based on a nominal PPS signal from the navigation unit, and wherein, in a case that the navigation system is not functioning correctly, the plurality of input trigger pulses is generated based on a simulated clock source of the synchronization unit.