Abstract:
A phosphor material is presented that includes a blend of a first phosphor, a second phosphor and a third phosphor. The first phosphor includes a composition having a general formula of ((Sr1−zMz)1−(x+w)AwCex)3(Al1−ySiy)O4+y+3(x−w)F1−y−3(x−w), wherein 0
Abstract translation:提供了包括第一荧光体,第二荧光体和第三荧光体的共混物的荧光体材料。 第一种荧光体包括具有通式((Sr1-zMz)1-(x + w)AwCex)3(Al1-ySiy)O4 + y + 3(x-w)F1-y-3(x- w),其中0
Abstract:
It is an object to provide a light-emitting material with higher emission luminance than conventional one in terms of a crystalline structure of the light-emitting material, as a light-emitting material using an inorganic compound. First baking is performed after mixing gallium arsenide, gallium phosphide, or gallium antimonide with manganese to form a first baked product, second baking is performed after mixing a base material with an element for forming a luminescent center material or a compound including the element to form a second baked product, and third baking is performed after mixing the first baked product with the second baked product, so that a light-emitting material is manufactured.
Abstract:
The EL device has a first electrode formed over a substrate, an insulating layer made from a dielectric material having a dielectric constant of 300 or greater formed over the first electrode, a light emitting layer formed over the insulating layer having a film thickness in a range of 10 μm to 100 μm, and a second electrode formed over the light emitting layer.
Abstract:
Disclosed is EL phosphor powder which contains phosphor particles that comprise zinc sulfide as the matrix thereof and contain an activator and a co-activator, wherein at least 30% of the number of the phosphor particles contained in the EL phosphor powder are those having an aspect ratio (length of major axis/length of minor axis) of at least 3. EL devices comprising the EL phosphor powder enable bright light emission.
Abstract:
Optionally doped nanoparticle dispersions of metal chalcogenides are prepared by a precipitation step in aqueous medium, followed by a diafiltration or ultrafiltration step in the presence of a compound capable of preventing agglomeration of said metal chalcogenide nanoparticles.
Abstract:
An electroluminescent display panel which is able to selectively display different colors by changing a voltage level imposed thereon is made in a simple structure. A first luminescent layer (4) emitting green light, for example, and a second luminescent layer (5) emitting orange light, for example, are directly laminated on each other without interposing an intermediate electrode therebetween. The second luminescent layer covers only a part of the first luminescent layer to form a single layer portion and a double layer portion. The single layer portion emits green light at a low voltage level, while the double layer portion emits lemon light having a higher luminance at a high voltage level. The display may be made in a form of a matrix or a certain pattern. The display panel may be used as an instrument panel for an automobile. The green light display is used at night time, while the lemon light display with a high luminance is used at day time to cope with sun light.
Abstract:
A barium magnesium aluminate phosphor having improved maintenance and efficiency is provided. The novel phosphor is suitable for use in conventional fluorescent lamp applications and applications utilizing VUV excitation, including Xe excimer lamps and plasma display panels.
Abstract:
A method for manufacturing a thin-film EL device utilizes a Zn-Mn target that contains less Mn than the optimum Mn concentration on the basis of the finding that the light-emitting layer grown by the sputtering method contains more Mn than in the target. Manganese concentration on the target surface layer is controlled by changing the area ratio between ZnS and Mn exposed on the surface of the target. Manganese concentration on the target surface is controlled at preferably from 0.3 to 0.4 wt % when the target surface is sulfurized during sputtering and less than 0.1 wt % when the target surface is not sulfurized.
Abstract:
Disclosed is an electroluminescent device including a substrate and an electroluminescent film on the substrate wherein the electroluminescent film is composed of a II-VI group compound semiconductor matrix and an electroluminescent center element; the improvement being present in that the electroluminescent film has a crystal structure of a hexagonal system, and contains the electroluminescent center element in a concentration (Ci) of 0.5 to 4 at. % within a thickness of 0.2 micrometer from the side of the substrate and in a concentration (Cr) of 0.15 to 0.7 at. % at the residual portion, and Ci is larger than Cr, and the process for preparing the same.