Abstract:
An X-ray tube construction of the rotating anode type for reducing acoustic noise and vibration by using granules which are placed loosely within an anode cavity formed between the outer surface of an anode shank and a wall of an anode sleeve in proximity to a bearing journaled to a rotor shaft for rotation of an anode structure.
Abstract:
An X-ray tube device capable of reducing an amount of work required in the operation of its replacement, and of eliminating a wasteful replacement of a still operational part of the device. The device includes an X-ray tube; at least one heat exchanger for cooling the X-ray tube by using a circulation of insulating oil; a plurality of oil hoses for transmitting the insulating oil between the X-ray tube and the heat exchanger; and at least one coupler for connecting the X-ray tube and the heat exchanger through the oil hoses by being in a coupled state, and for disconnecting the X-ray tube and the heat exchanger through the oil hoses by being in a decoupled state.
Abstract:
An alternating-current voltage of a commercial power supply is converted to a direct-current voltage by a rectifier and the output direct-current voltage of the rectifier is converted to an alternating-current voltage again by a DC/AC inverter. The alternating-current voltage is boosted by a transformer up to an intermediate voltage (e.g., 1-20 KV). The output voltage of the transformer is supplied through the slip-ring provided between a frame stationary section and a frame rotating section of a voltage multiplier provided within the rotating section to be multiplied to a high voltage (e.g., .+-.60-.+-.70 KV). Outputs of the voltage multiplier are supplied to the anode and cathode of an X-ray tube. A voltage multiplier for producing an anode supply voltage and a voltage multiplier for producing a cathode supply voltage are constructed in separate units. The two voltage multiplier units and the X-ray tube unit are disposed within a housing of the rotating section shaped like a ring at equal angular intervals of 120.degree.. The X-ray tube unit contains a protective resistor. The protective resistor is connected in at least one of positions between the anode of the X-ray tube and an anode voltage supply terminal, between a center metal of the X-ray tube and a center metal terminal and between the cathode of the X-ray tube and a cathode voltage supply terminal.
Abstract:
The disclosure concerns X-ray tubes. To obtain greater temperature stability of an X-ray tube, a substance is placed in the circulation space of the cooling fluid of the tube. The latent heat of fusion of this substance is used so that it melts during the examination stage in absorbing heat, and gets solidified during the resting stage. The disclosure is applicable to X-ray tubes.
Abstract:
The invention relates to an apparatus and to a process for producing bremsstrahlung. This apparatus comprises in a ferromagnetic member a circular cavity containing electrons rotated on a circular path under the action of a magnetic field induced by the ferromagnetic member and by means for inducing a magnetic field. The apparatus also comprises a circular target partly located outside the cavity and rotating in a plane perpendicular to that of the path of the electrons. The end of the target periodically traverses said path in order to interact periodically with the electrons on their path, so as to produce bremsstrahlung. Means are provided for varying the magnetic field in the cavity and are synchronized with the interaction period of the target on the electrons and are connected to the induction means.Application to all fields requiring the production bremsstrahlung.
Abstract:
An x-radiator has a housing in which an x-ray tube is disposed surrounded by an electrically insulating coolant and having a circulation system for the coolant. The housing is substantially filled with the coolant, and a heat exchanger is disposed outside of the housing through which the coolant is pumped. *) The direction of flow of the coolant is automatically reversible dependent on the three-dimensional position of the x-radiator. *) For aiding in dissipating heat from said coolant a cooling fluid is circulated through the heat exchanger isolated from the coolant.
Abstract:
The soft X-ray apparatus of the present invention includes a vessel at low pressure or a vacuum in which a liquid target material, preferably mercury, is discharged in the form of a series of discontinuous droplets. The flow of the droplets of liquid target material is controlled by a control device, and synchronized with a high energy pulse beam, preferably a high energy laser pulse beam, provided by a laser device through a window in the vessel. In the preferred embodiment, this laser device also is controlled by the control device so that the laser pulse beam impinges a droplet of mercury inside the vessel to produce plasma to thereby generate soft X-rays. The droplets of mercury are sized to correspond to the size of the laser pulse beam at the point where the laser pulse beam impinges the droplet of mercury to maximize the strength of the soft X-rays and efficiently utilize the power of the high energy laser pulse beam. The soft X-rays exit the vessel through additional windows for subsequent use. A recovery mechanism is connected to the vessel to cover any unused liquid target material so that this material can be recirculated.
Abstract:
An X-ray source apparatus contains an X-ray target which emits X-ray when bombarded with electrons from an electron source. A strong magnetic field, e.g. from a superconducting solenoid, having curved lines of magnetic flux interlinks the target and electron source. The magnetic field has sufficient strength over the entire electron path of travel to constrain the electrons emitted from the source with components at angles to the magnetic field to execute helical paths about the field lines to the target. An aperture means is positioned to block the straight line paths between the source and the target but permits the passage of substantially all electrons traveling along the lines of flux.
Abstract:
Disclosed herein is a X-ray lithography system in which X-rays are generated by a laser beam focused upon a target within an evacuated chamber to create a soft X-ray emitting plasma which also emits debris particles. A thin sheet of X-ray transparent gas is provided between the target and a mask used in the lithographic process to displace the particles away from the mask. The sheet of gas may also be used to maintain a pressure differential across an opening in the evacuated chamber through which the X-rays pass towards the target. In addition, the gas sheet may be used to cool the X-ray mask by placing the mask close to the sheet but at a sufficient distance so that the sheet does not interfere with the mask.
Abstract:
A method is provided for producing plasma pinch X-rays usable in X-ray lithography. Ionized heated plasma is repeatably generated in a first area directly from solid material without exploding the latter. X-rays are generated in a second area by passing high current through the plasma causing radial inward magnetic field pinching. Accurate control and improved intensity performance, and greater flexibility in selection of X-ray emitting materials, are provided by the separation of the plasma generating and the X-ray pinch generating functions.