Abstract:
A UV-assisted advanced-ozonation water treatment system comprises a water treating tank 1, an ozonic water tank 2, an ozonized gas generator 3, and a UV light source 4 disposed in the water treating tank 1 and having a UV-radiating surface 4a, and an ozonic water jetting device including jetting nozzles 5 for jetting the ozonic water onto the UV-radiating surface of the UV light source. An ozonized gas diffusing device 12 is placed in the ozonic water tank 2. An ozonized gas generated by the ozonized gas generator 3 and compressed by a compressor 13 at a pressure in the range of about 2 to about 3 kg/cm2 is diffused into the ozonic water tank 2 by the ozonized gas diffusing device 12. A high-pressure, a high-ozone-concentration ozonic water produced in the ozonized water tank 2 is jetted through the jetting nozzles 5 onto the UV-radiating surface 4a.
Abstract translation:紫外线辅助先进臭氧化水处理系统包括设置在水处理槽1中的水处理槽1,臭氧水箱2,臭氧化气体发生器3和UV光源4,并具有UV辐射表面4 a和一个臭氧水喷射装置,其包括用于将臭氧水喷射到UV光源的UV辐射表面上的喷射喷嘴5。 将臭氧化气体扩散装置12放置在臭氧水箱2中。 由臭氧化气体发生器3产生的臭氧化气体,在压力为约2〜3kg / cm 2的压力下由压缩机13压缩的臭氧化气体被臭氧化的臭氧化气体 气体扩散装置12。 在臭氧水箱2中产生的高压,高臭氧浓度的臭氧水通过喷射喷嘴5喷射到UV辐射表面4a上。
Abstract:
A calender for a sheet of paper comprising a metal roll which is rotated by a first driving unit. The calender further comprises a rotatable cylindrical jacket, a pressurizing shoe, and a plurality of support members. The cylindrical jacket is disposed opposite the metal roll to form a calender nip so that the sheet of paper is continuously passed through the calender nip. The pressurizing shoe is provided within the jacket at the position of the calender nip and presses the interior surface of the jacket radially outward to pressurize the calender nip. The support members are disposed inside the jacket so that they are equally balanced in the peripheral direction of the jacket.
Abstract:
A calender for a sheet of paper comprising a metal roll which is rotated by a first driving unit. The calender further comprises a rotatable cylindrical jacket, a pressurizing shoe, and a plurality of support members. The cylindrical jacket is disposed opposite the metal roll to form a calender nip so that the sheet of paper is continuously passed through the calender nip. The pressurizing shoe is provided within the jacket at the position of the calender nip and presses the interior surface of the jacket radially outward to pressurize the calender nip. The support members are disposed inside the jacket so that they are equally balanced in the peripheral direction of the jacket.
Abstract:
A laser beam 5 is directed to a target made of an oxide superconductor to allow a target spot which is irradiated with the beam to be evaporated and a matter which is evaporated to be deposited as a thin film on the surface of a substrate 3 at which time excited oxygen is supplied to or near a thin film deposition site on the substrate 3. In this way, an oxide superconductor thin film is formed on the substrate with oxygen atoms incorporated in the crystal structure of the thin film.
Abstract:
A calender for a sheet of paper comprising a metal roll which is rotated by a first driving unit. The calender further comprises a rotatable cylindrical jacket, a pressurizing shoe, and a plurality of support members. The cylindrical jacket is disposed opposite the metal roll to form a calender nip so that the sheet of paper is continuously passed through the calender nip. The pressurizing shoe is provided within the jacket at the position of the calender nip and presses the interior surface of the jacket radially outward to pressurize the calender nip. The support members are disposed inside the jacket so that they are equally balanced in the peripheral direction of the jacket.
Abstract:
Disclosed is a laser apparatus for effecting laser oscillation by exciting a laser medium by discharge between an anode and a cathode opposedly arranged to each other in a discharge tube, comprising means disposed in the discharge tube to support both the electrodes movably along the axial direction of the discharge tube so as to prevent warp of the electrodes on laser oscillation and keep the parallelism therebetween with high accuracy. Also disclosed is a laser apparatus comprising main discharge means for effecting laser oscillation by exciting a laser medium by generating discharge, and preionization means for generating ionization previously to the discharge by the main discharge means so as to stabilize laser oscillation under a high gas pressure and a high current density.
Abstract:
A liquid crystal display device of electrically controlled birefringence mode includes the combination of a liquid crystal cell having a liquid crystal layer sandwiched between a pair of substrates, and a hybrid retardation layer in which liquid crystal molecules are hybrid-aligned, and the hybrid retardation layer is formed by deposition at the liquid crystal layer side on one substrate of the pair of substrates.
Abstract:
A shoe press apparatus of a paper machine for pressing wet paper through a nip includes a counter roll, and a shoe module disposed adjacent to the counter roll. The shoe module includes a cylindrical blanket, and a press mechanism disposed inside the cylindrical blanket, extending in a width direction of the cylindrical blanket and individually pressing a plurality of pressed portions formed on the cylindrical blanket along a traveling direction of the wet paper, toward an outer-surface of the counter roll so that the wet paper is pressed in the nip between the cylindrical blanket and the counter roll so that a pressure can be applied efficiently in response to a density required for paper solely by the shoe press apparatus.
Abstract:
A monitoring apparatus is provided which can ensure the prevention of a paper break even in a poor installation environment. A light source (9) illuminates light (9a) on a lateral edge (1a) of wet paper (1) and a camera (5) captures light (9b) reflected therefrom. The camera (5) is a micro camera and completely covered by a camera box (10). The camera box (10) has an observation window (10a) which is made of a transparent member, at the lens side (5a) of the camera (5). The outer surface of the observation window (10a) is coated and an air curtain (12a) that flows from above to below prevents staining caused by mist. The air curtain (12a) is formed in such a manner that air that is continuously supplied inside a cover (11) flows along the outer surface of the observation window (10a) from an opening portion (11a). A color image obtained by the camera (5) is subjected to image processing in an image processing device (6) and the resulting image is projected on a monitor TV (7), so that variations of the release point (3) can be monitored. This allows for forecasting of a machine abnormality leading to a paper break.
Abstract:
A calender for a sheet of paper comprising a metal roll which is rotated by a first driving unit. The calender further comprises a rotatable cylindrical jacket, a pressurizing shoe, and a plurality of support members. The cylindrical jacket is disposed opposite the metal roll to form a calender nip so that the sheet of paper is continuously passed through the calender nip. The pressurizing shoe is provided within the jacket at the position of the calender nip and presses the interior surface of the jacket radially outward to pressurize the calender nip. The support members are disposed inside the jacket so that they are equally balanced in the peripheral direction of the jacket.