Abstract:
A microchannel plate assembly includes a plurality of microchannel plates that are aligned along a common axis and coupled together. The microchannel plates each have an object-side surface and an image-side surface and the assembly has respective interfaces between the image-side surface and the object-side surface of adjacent microchannel plates. At least one ion barrier film is disposed on at least one of the microchannel plates, but only on the object-side surfaces in the interfaces.
Abstract:
A photomultiplier according to an embodiment of the present invention has a sealed container the interior of which is maintained in a vacuum state, and an electron multiplier unit housed in the sealed container, and the sealed container is partly constructed of ceramic side tubes, on the assumption that the photomultiplier is used under high-temperature, high-pressure environments. The photomultiplier further has a structure for fixing an installation position of the electron multiplier unit relative to the sealed container, for improvement in anti-vibration performance.
Abstract:
The invention provides a hermetically sealed scintillation crystal package with a window made of a ruggedized material such as ALON (aluminum Oxynitride) or Spinel ceramic (MgAl2O4) where the window is sealed to an external metallic housing part by a brazing or soldering process and the external housing part is welded to the housing containing the scintillation crystal.
Abstract translation:本发明提供了一种密封的闪烁晶体封装,其具有由诸如ALON(氮氧化铝)或尖晶石陶瓷(MgAl 2 O 4)等加固材料制成的窗口,其中窗口通过钎焊或焊接工艺密封到外部金属外壳部件,外部 壳体部分焊接到包含闪烁晶体的壳体。
Abstract:
A metal side tube (2), a glass faceplate (3), and a stem plate ( ) constitute a hermetically sealed vessel (5) for a photomultiplier tube. An edge portion (20) is provided at on open end (A) of the side tube (2). The edge portion (2) is embedded in the faceplate (3) in such a manner as to strike on the faceplate (3). Accordingly, high hermeticity at a joint between the side tube (2) and the faceplate (3) is ensured. The edge portion (20) extends upright in an axial direction of the side tube (2), so that the edge portion (20) can be embedded as close to a side face (3c) of the faceplate (3) as possible. This structure increases an effective sensitive area of the faceplate (3) to nearly 100%, and decreases dead area as close to 0 as possible. As described above, the photomultiplier tube (1) according to the present invention has enlarged effective sensitive area of the side tube (3) and enhanced hermeticity of the joint between the faceplate (3) and the side tube (2).
Abstract:
In the microchannel 50, a conductive film 52 is formed on an electron input surface of a dynode 51 where the plurality of channels are arranged. The conductive film is made of material that can transmit light that has originated photoelectrons and that has a refractive index lower than that of the dynode constituting material.
Abstract:
A photomultiplier uses an avalanche photodiode as a position-sensitive anode. The envelope of the photomultiplier has a flat input end. Electrically conductive regions mounted to the input end are configured to produce at the input end a potential distribution characteristic of a photomultiplier with a spherical-type input end as measured in a transverse plane immediately adjacent the spherical-type input end. A photocathode is located inside the photomultiplier and is electrically connected to the electrically conductivew regions. Advantageously, the envelope has flat sides and a square cross-section; in this instance, conductors are run along the sides to produce within the envelope a potential distribution characteristic of a photomultiplier which is cylindrical in cross-section, as measured at flat surfaces having the same shape as the envelope.
Abstract:
Reduced ion feedback in an electron multiplier (EM) is achieved by applying a higher than normal bias voltage to the EM and degassing the EM with a relatively high concentration of self-generated particles as a result of the applied bias voltage.
Abstract:
A photo electric conversion tube in which a translucent photocathode surface is provided inside of an incident light window. The incident light window is made of glass plate and an optical fiber plate bonded to at least part of the glass plate or just the optical fiber plate on the photocathode surface. The optical fiber plate contains fibers which are inclined at an angle to the photocathode surface.
Abstract:
An image intensifier tube and a method of making same are disclosed wherein veiling glare caused by the amplification of off axis light is reduced. Included is a non-reflective, near infrared light absorbing first layer formed on the face plate of the tube adjacent any surface at which off-axis light could otherwise be reflected to the photoemissive device associated with the face plate and an electronically conductive second layer formed on top of the first layer. Such coatings are preferably formed by sputter deposition.
Abstract:
In a laminated channel plate electron multiplier, an apertured metal sheet (32) is disposed at a small distance (30 .mu.m) from the outer surface of the input dynode and is used to provide a small negative field for turning back stray secondary electrons which have sufficient energy to follow trajectories across the input side of the input dynode. More particularly, the areas between the apertures of the input dynode (22) are masked by a material (34) having a secondary electron emission coefficient of less than 2, which material (34) is provided on the outer surface of the apertured metal sheet (32), the metal sheet (32) being spaced from the input dynode (22) by an insulating material (36). A potential of the order of -10 V relative to the input dynode is applied to the apertured metal sheet (32).