Abstract:
A process fluid pressure sensing system includes a process fluid pressure transmitter and a process manifold. The process fluid pressure transmitter has first and second pressure inlets and is configured to obtain a measurement relative to pressures applied at the first and second pressure inlets and provide a process variable output based on the measurement. The process manifold is operably coupled to a process fluid and has first and second pressure outlets. A first high-pressure coupling joins the first pressure outlet of the process manifold to the first pressure inlet of the process fluid pressure transmitter. A second high-pressure coupling joins the second pressure outlet of the process manifold to the second pressure inlet of the process fluid pressure transmitter. The first and second high-pressure fluid couplings are configured to accommodate misalignment between the respective pressure outlets and inlets.
Abstract:
A wafer-type electromagnetic flow sensor includes a single-piece chassis having a pair of faces and a flow conduit extending between the pair of faces. Each face of the chasses includes a feature configured to engage a metal sealing ring. A non-conductive liner is disposed in the flow conduit of the single-piece chassis. A plurality of electromagnetic coils is configured to generate a flux into process fluid flowing through the flow conduit. A pair of electrodes is configured to electrically couple to the process fluid. A feedthrough assembly is configured to maintain process fluid pressure while allowing a plurality of electrical conductors to pass therethrough.
Abstract:
A corrosion rate measurement system includes a first membrane of a first material configured to be exposed to a corrosive material and deflect in response to corrosion. A second membrane is configured to be exposed to a corrosive material and deflect in response to corrosion. A pressure sensor is operably coupled to at least one of the first and second membranes and configured to measure deflection of at least one of the first and second membranes as a function of a pressure and an amount of corrosion at least one of the first and second membranes.
Abstract:
An embodiment of the present invention includes a display device including a mechanical indicator, a reference photodetector, a measurement photodetector, and an opaque shroud. The opaque shroud is connected to the mechanical indicator to variably cover the measurement photodetector based on a position of the mechanical indicator. The opaque shroud does not cover the reference photodetector.
Abstract:
A temperature sensor includes a temperature probe, an adapter, a resilient device, and a visual indicator. The temperature probe includes a temperature sensing device disposed at a temperature probe tip. The adapter surrounds a portion of the temperature probe such that the temperature probe is movable within the adapter in a lengthwise direction. The adapter includes a physical reference. The resilient device is adapted to produce a force between the adapter and the temperature probe. The force being variable based on a position of the temperature probe within the adapter. The visual indicator is disposed on a surface of the temperature probe. Alignment of the visual indicator with the physical reference corresponds to a desired force produced by the resilient device.
Abstract:
A temperature sensor assembly for use with a process vessel wall includes a base structure, a first temperature sensor, a second temperature sensor, and a processor. The base structure forms a contact area with an external surface of the process vessel wall. The first temperature sensor extends through the base structure to measure a temperature of the external surface of the process vessel wall. The second temperature sensor is at a second surface spaced from the first surface to measure a temperature of the second surface of the base structure. The processor is connected to the first and second temperature sensors, and adapted to determine an internal process vessel wall temperature value as a function of the measured temperature of the external surface of the process vessel wall, the measured temperature of the second surface of the base structure, base structure parameters, and process vessel wall parameters.
Abstract:
A magnetic flowmeter includes a pipe with a non-conductive PTFE liner, magnetic coils to generate a magnetic field, and electrodes in contact with the fluid on opposite sides of the pipe. The electrodes comprise conductive PTFE patch electrodes bonded to the non-conductive PTFE liner so that an inner end of each patch electrode is exposed to fluid flowing through the interior pipe and an outer end of each patch electrode is aligned with an electrode hole in the pipe.
Abstract:
A magnetic flowmeter includes a flowtube with electrodes and field coil and a transmitter that automatically determines an operating setpoint for the magnetic flowmeter based upon sensed coil inductance, sensed coil resistance, a power rating for the transmitter, the flowtube, or both, and selected performance criteria.
Abstract:
A magnetic flowmeter for measuring a flow of a process fluid includes a flowtube arranged to receive the flow of the process fluid. First, second and third coils are arranged adjacent the flowtube. First and second electrodes are arranged to sense an electrical potential of the process fluid related to an applied magnetic field and a flow rate of the process fluid. The sensed electrical potential is used to calculate the flow rate of the process fluid through the flow tube.
Abstract:
A field device includes a housing having at least an antenna receiving bore. Field device electronics are disposed within the housing and include wireless communication circuitry configured to communicate wireless process information. An antenna assembly includes an antenna base engaged within the antenna receiving bore of the housing. The antenna assembly including an antenna operably coupled to the wireless communication circuitry. The antenna assembly is rotatable within the bore by an amount less than one full rotation, and rotation of the antenna assembly varies orientation of the antenna.