Abstract:
A surface enhanced Raman spectroscopy calibration curve generating system includes a SERS sensor, which includes a substrate and a plurality of sensing members formed on the substrate. Each of the sensing members includes a plurality of SERS signal amplifying structures. An inkjet dispensing device is to dispense different concentrations of a solution including a known analyte of interest onto the respective sensing members to form a concentration dependent array. A Raman spectrometer is to interrogate the concentration dependent array. A processor is operatively connected to each of the inkjet dispensing device and the Raman spectrometer. Computer-readable instructions are embedded on a non-transitory, tangible computer-readable medium and are executable by the processor. The computer-readable instructions are to automatically generate an intensity profile as a function of concentration for the concentration dependent array.
Abstract:
A hybrid nanostructure for molecular analysis is disclosed. The structure includes a plurality of nanofingers wherein each nanofinger is coated with a metal coating, is attached at one end to a substrate, and is freely bendable along its length such that the second ends of each nanofinger are capable of movement toward each other to form a cavity. The structure further includes a nanoparticle trapped in the cavity. An array of hybrid nanostructures and a method for fabricating the hybrid nanostructures are also disclosed.
Abstract:
An apparatus for use in a sensing application includes a body having a cavity containing an opening. The apparatus also includes a plurality of nano-fingers positioned in the cavity and a destructible cover covering the opening in the cavity to protect the plurality of nano-fingers, wherein the destructible cover is to be destroyed to enable access to the plurality of nano-fingers.
Abstract:
A surface enhanced Raman spectroscopy (SERS) apparatus employs a nanorod in an indentation in a surface of a substrate. The SERS apparatus includes the nanorod having a tip at a free end opposite to an end of the nanorod that is supported by the substrate indentation. The indentation has a tapered profile and supports the nanorod at a bottom of the indentation. The free end of the nanorod extends away from the indentation bottom. The SERS apparatus further includes a Raman-active material at a surface of one or both of the nanorod and the indentation. The indentation and the nanorod facilitate one or both of production and detection of a Raman scattering signal emitted by an analyte in a vicinity of the nanorod and indentation.
Abstract:
A probe for use in a sensing application includes an elongate body having a first end and a free end, wherein the first end is to be attached to a support. The probe also includes a plurality of nano-fingers having respective bases and tips, wherein each of the plurality of nano-fingers is attached to the free end and is composed of a flexible material, and wherein the plurality of nano-fingers are collapsed toward each other such that the tips of the plurality of nano-fingers are substantially in contact with each other.
Abstract:
A metallic-nanofinger device for chemical sensing. The device includes a substrate, and a plurality of nanofingers. A nanofinger includes a flexible column, and a metallic cap coupled to an apex of the flexible column. At least the nanofinger and a second nanofinger are to self-arrange into a close-packed configuration with at least one analyte molecule disposed between at least the metallic cap and a second metallic cap of respective nanofinger and second nanofinger. A morphology of the metallic cap is to generate a shifted plasmonic-resonance peak associated with amplified luminescence from the analyte molecule. A coating encapsulating the metallic cap to respond upon exposure to a liquid, and a chemical-sensing chip including the metallic-nanofinger device are also provided.
Abstract:
A reconfigurable surface enhanced Raman spectroscopy (SERS) apparatus, system and method employ a stimulus responsive material to move nanorods of a plurality between inactive and active configurations. The apparatus includes the plurality of nanorods and the stimulus responsive material. The system further includes a Raman signal detector. The method of reconfigurable SERS includes providing the plurality of nanorods and exposing the stimulus responsive material to a stimulus. The exposure causes a change in one or more of a size, a shape and a volume of the stimulus responsive material that moves the nanorods between the inactive and active configurations. The active configuration facilitates one or both of production and detection of a Raman scattering signal emitted by the analyte.
Abstract:
An apparatus for performing SERS includes a substrate and flexible nano-fingers, each of the nano-fingers having a first end attached to the substrate, a free second end, and a body portion extending between the first end and the second end, in which the nano-fingers are arranged in an array on the substrate. The apparatus also includes an active material layer disposed on each of the second ends of the plurality of nano-fingers, in which the nano-fingers are to be in a substantially collapsed state in which the active layers on at least two of the nano-fingers contact each other under dominant attractive forces between the plurality of nano-fingers and in which the active material layers are to repel each other when the active material layers are electrostatically charged.
Abstract:
A luminescent chemical sensor integrated with at least one molecular trap. The luminescent chemical sensor includes at least one molecular trap and at least one metallic-nanofinger device integrated with at least one molecular trap. The molecular trap includes a plurality of electrodes that trap at least one analyte molecule. The metallic-nanofinger device includes a substrate, and a plurality of nanofingers coupled with the substrate. A nanofinger of the plurality includes a flexible column, and a metallic cap coupled to an apex of the flexible column. At least the nanofinger and a second nanofinger of the plurality of nanofingers are to self-arrange into a close-packed configuration with the analyte molecule. A method for using, and a chemical-analysis apparatus including the luminescent chemical sensor are also provided.
Abstract:
An asymmetrical-nanofinger device for surface-enhanced luminescence. The device includes a substrate, and a plurality of nanofingers coupled with the substrate. The plurality of nanofingers includes a primary nanofinger having a primary active-material cap, and a secondary nanofinger having a secondary active-material cap. An average diameter of the primary active-material cap is substantially greater than an average diameter of the secondary active-material cap. The primary nanofinger and secondary nanofinger of the plurality of nanofingers are to self-arrange into a close-packed configuration with an analyte molecule disposed between the primary active-material cap and the secondary active-material cap. A method for fabricating the asymmetrical-nanofinger device, and an optical apparatus including an optical component that includes the asymmetrical-nanofinger device are also provided.