Abstract:
Concepts and technologies are described herein for a hybrid network-based and device-based intelligent radio access control. According to one aspect disclosed herein, a radio access technology (“RAT”) selection system and a mobile device cooperate to enable an intelligent multi-radio access control that can select a RAT that is best-suited for the mobile device. The RAT selection system can select networks based upon network conditions, policies, user profiles, applications, and/or other information, and provide a list of the networks to the mobile device. The mobile device can utilize local device information to select a network from the list. In this manner, the RAT selection system and the mobile device can cooperate to steer traffic to various networks operating in accordance with different RATs to improve user experience, especially in network traffic congested areas, and to efficiently leverage network resources for mobile telecommunications and WI-FI networks.
Abstract:
Mobile management in a cellular network utilizes the multipath-transfer control protocol (MP-TCP). A mobile device establishes a first multipath-transfer control protocol (MP-TCP) subflow to a corresponding node using a first internet protocol (IP) address corresponding to the mobile device. At least a portion of the first IP address is uniquely associated with the first coverage area. The mobile device establishes a second MP-TCP subflow using a second IP address corresponding to the mobile device while the mobile device is in an overlapped coverage area including a first portion of the first coverage area and a second portion of a second coverage area. At least a portion of the second IP address is uniquely associated with the second coverage area. The mobile node turns off the first subflow when the mobile node determines it has left the first coverage area.
Abstract:
Concepts and technologies described herein relate to an enhancement to an access network discovery and selection function (“ANDSF”) with a cell-type management object (“MO”) within an ANDSF MO tree. According to one aspect disclosed herein, a system including an ANDSF can generate a policy for network selection. The policy can include network selection criteria based upon a cell-type. The cell-type may be a small cell cell-type, a macro cell cell-type, or a multi-standard metro cell (“MSMC”) cell-type. The network selection criteria can be further based upon WI-FI availability. The system can send the policy to a mobile device. The mobile device can utilize the policy to select a network. In some embodiments, the network selection criteria includes network load information, local device information, user profile information, or some combination thereof.
Abstract:
An interface between access points is enhanced by enabling an exchange of a cell characteristic information element (IE). The cell characteristic information can provide an access point with information about the characteristics/features/capabilities of its neighbor cells. Automatic neighbor relations are also enhanced to store and/or manage the cell characteristic information. Moreover, the cell characteristic information can be utilized by the access point to significantly improve handover (HO) decisions, increase load balancing performance, and/or decrease inter cell interference. The cell characteristic information can also improve network efficiency and avoid bottlenecks during cell reselection in Heterogeneous Networks (HetNets).
Abstract:
A user equipment device cell reselection procedure includes scaling factors that are based on cell-types of a camping cell and neighbor cells and a mobility state of the user equipment device. The scaling factors can be received in a system information block message. During an idle mode cell selection/reselection procedure, the user equipment device can apply the appropriate scaling factor to the hysteresis during the cell selection/reselection procedure.
Abstract:
A mobile device mobility state is included in device reporting to a radio access network for mobility event and load balancing purposes. Respective load conditions and respective coverage areas of a first set of devices of a first network and a second set of devices of a second network are analyzed. In addition, a mobility state of a mobile device, a first signal strength associated with the first set of devices, and a second signal strength associated with the second set of devices are also analyzed. The mobility state is a function of a movement pattern of the mobile device and a speed at which the mobile device is being moved. Network traffic of the mobile device is routed to a set of network devices selected from the first set of devices and the second set of devices, as a result of the analysis.
Abstract:
Methods and apparatus to deploy fiber optic based access networks are disclosed. An example access network comprises a first fiber optic cable segment to couple an optical access head-end to a first pedestal and to transport user data, a second fiber optic cable segment to couple the first pedestal to a second pedestal and to transport a first portion of the user data to the second pedestal, a drop cable segment to couple the first pedestal to a customer premises and to transport a second portion of the user data to the customer premises, and a switch at the first pedestal to route the first portion of the user data between the first and second fiber optic cable segments and to route the second portion of the user data between the first fiber optic cable segment and the drop cable segment.
Abstract:
Intelligent radio access technology sensing and selection are applied in a dynamic traffic steering network. Network characteristics and network policies are determined. A server sends network characteristics and network policies to user equipment devices. User equipment devices can determine a radio access technology to connect to based on network policies and network characteristics. Further, it can be determined how to select user equipment devices for connection to a radio access network via a radio access technology. User equipment devices can dynamically select a radio access network for connection based on real-time or near real-time radio access network conditions. A self-organizing network can monitor and determine radio access network conditions and the radio access network conditions can be sent to user equipment devices in given cellular broadcast area.
Abstract:
Concepts and technologies are described herein for traffic steering across cell-types. According to one aspect disclosed herein, a mobile device enables radio access network (“RAN”) selection across multiple cell-types, including, but not limited to, macro cells, metro cells, femto cells, pico cells, and the like, based upon network conditions, local device information, and/or other information such as policies and user profiles. The local device information can include, but is not limited to, mobility state information, performance measurement information, battery utilization information, channel quality information, and user overrides.
Abstract:
Methods and apparatus to deploy fiber optic based access networks are disclosed. An example access network comprises a first fiber optic cable segment to couple an optical access head-end to a first pedestal and to transport user data, a second fiber optic cable segment to couple the first pedestal to a second pedestal and to transport a first portion of the user data to the second pedestal, a drop cable segment to couple the first pedestal to a customer premises and to transport a second portion of the user data to the customer premises, and a switch at the first pedestal to route the first portion of the user data between the first and second fiber optic cable segments and to route the second portion of the user data between the first fiber optic cable segment and the drop cable segment.