Abstract:
Example embodiments relate to spectrum resource sharing management. A first mobile network operator (MNO) network device receives a request for network access from a UE operable to communicate with network devices of a first mobile network operator. The first MNO network device determines whether it has enough bandwidth to meet the UE's request, by determining whether a threshold level of utilization of frequencies in a first frequency range allocated to the first MNO network has been met. In response to a determination that the threshold level has been met, the first MNO network device transmits an electronic token to a second MNO network device in a coverage region of the network device, wherein the electronic token is indicative of a request for authorization to use a frequency in a frequency range that is allocated to a second MNO. The second MNO network device can transmit an authorization for the first MNO network device to use the frequency.
Abstract:
When machine-to-machine (M2M) devices attach to a mobile communication network, the associated communication session can be treated differently than the attachment of other devices. For example, upon determining that a subscriber device that attaches to a communication network is an M2M device and has completed a given network transaction, the M2M device can be immediately detached without waiting on expiration of an inactivity timer. As another example, upon determining that a subscriber device that attaches to a communication network is an M2M device, the M2M device can be excluded from various signaling procedures such as load-balancing procedures.
Abstract:
Aspects of the subject disclosure may include, for example, determining a first address of user equipment from a mobile communication network connection request and identifying that the user equipment is stationary based on comparing the first address of the user equipment in the connection request to a second address of a stationary subscriber device. A non-tunneling link is initiated between the user equipment and a stationary packet core of the mobile communication network, based on identifying that the user equipment is stationary, and the connection request is converted from a non-access stratum protocol to an authentication protocol responsive to initiating the non-tunneling link. Other embodiments are disclosed.
Abstract:
When machine-to-machine (M2M) devices attach to a mobile communication network, the associated communication session can be treated differently than the attachment of other devices. For example, upon determining that a subscriber device that attaches to a communication network is an M2M device and has completed a given network transaction, the M2M device can be immediately detached without waiting on expiration of an inactivity timer. As another example, upon determining that a subscriber device that attaches to a communication network is an M2M device, the M2M device can be excluded from various signaling procedures such as load-balancing procedures.
Abstract:
When machine-to-machine (M2M) devices attach to a mobile communication network, the associated communication session can be treated differently than the attachment of other devices. For example, upon determining that a subscriber device that attaches to a communication network is an M2M device and has completed a given network transaction, the M2M device can be immediately detached without waiting on expiration of an inactivity timer. As another example, upon determining that a subscriber device that attaches to a communication network is an M2M device, the M2M device can be excluded from various signaling procedures such as load-balancing procedures.
Abstract:
A more efficient network can be achieved using software-defined networking to configure routing tables to route data traffic to and from proper cells. User equipment address data and network device internet protocol address data can be utilized to define locators specific to a user equipment device in relation to various network devices. For instance, broadcasted network address data representative of a mobile device identifier address can be received by a first network device from the mobile device, wherein the mobile device identifier address comprises network address data related to an internet protocol address of a second network device, the first network device can determine a third network device capable of a communication with the mobile device, and the communication with the mobile device can be routed by the first network device to the third network device.
Abstract:
Concepts and technologies are disclosed herein for providing network address translation in a software defined networking environment. A control system can detect a request to create a network address translation function. The control system can analyze a recipe to identify a network address translation switch and a network address translation virtual function that are to provide functionality of the network address translation function, trigger instantiation of the network address translation switch via a network control function, and trigger instantiation of the network address translation virtual function via a service control function. The control system can validate the network address translation function and chain the network address translation function to a host. The network address translation function can provide address translation for the host using the network address translation switch.
Abstract:
When machine-to-machine (M2M) devices attach to a mobile communication network, the associated communication session can be treated differently than the attachment of other devices. For example, upon determining that a subscriber device that attaches to a communication network is an M2M device and has completed a given network transaction, the M2M device can be immediately detached without waiting on expiration of an inactivity timer. As another example, upon determining that a subscriber device that attaches to a communication network is an M2M device, the M2M device can be excluded from various signaling procedures such as load-balancing procedures.
Abstract:
Mobile management in a cellular network utilizes the multipath-transfer control protocol (MP-TCP). A mobile device establishes a first multipath-transfer control protocol (MP-TCP) subflow to a corresponding node using a first internet protocol (IP) address corresponding to the mobile device. At least a portion of the first IP address is uniquely associated with the first coverage area. The mobile device establishes a second MP-TCP subflow using a second IP address corresponding to the mobile device while the mobile device is in an overlapped coverage area including a first portion of the first coverage area and a second portion of a second coverage area. At least a portion of the second IP address is uniquely associated with the second coverage area. The mobile node turns off the first subflow when the mobile node determines it has left the first coverage area.
Abstract:
When machine-to-machine (M2M) devices attach to a mobile communication network, the associated communication session can be treated differently than the attachment of other devices. For example, upon determining that a subscriber device that attaches to a communication network is an M2M device and has completed a given network transaction, the M2M device can be immediately detached without waiting on expiration of an inactivity timer. As another example, upon determining that a subscriber device that attaches to a communication network is an M2M device, the M2M device can be excluded from various signaling procedures such as load-balancing procedures.