Abstract:
Embodiments described herein generally relate to methods for processing a dielectric film on a substrate with UV energy. In one embodiment, a precursor film is deposited on the substrate, and the precursor film includes a plurality of porogen molecules. The precursor film is first exposed to UV energy at a first temperature to initiate a cross-linking process. After a first predetermined time, the temperature of the precursor film is increased to a second temperature for a second predetermined time to remove porogen molecules and to continue the cross-linking process. The resulting film is a porous low-k dielectric film having improved elastic modulus and hardness.
Abstract:
Embodiments of the present invention generally relate to methods of forming carbon-doped oxide films. The methods generally include generating hydroxyl groups on a surface of the substrate using a plasma, and then performing silylation on the surface of the substrate. The hydroxyl groups on the surface of the substrate are then regenerated using a plasma in order to perform an additional silylation. Multiple plasma treatments and silylations may be performed to deposit a layer having a desired thickness.
Abstract:
Embodiments of the invention generally provide methods for sealing pores at a surface of a dielectric layer formed on a substrate. In one embodiment, the method includes exposing a dielectric layer formed on a substrate to a first pore sealing agent, wherein the first pore sealing agent contains a compound with a general formula CxHyOz, where x has a range of between 1 and 15, y has a range of between 2 and 22, and z has a range of between 1 and 3, and exposing the substrate to UV radiation in an atmosphere of the first pore sealing agent to form a first sealing layer on the dielectric layer.
Abstract translation:本发明的实施方案通常提供了在形成在基底上的电介质层的表面处密封孔的方法。 在一个实施方案中,该方法包括将形成在基底上的电介质层暴露于第一孔密封剂,其中第一孔密封剂含有具有通式C x H y O z的化合物,其中x具有1至15的范围,y具有 在2和22之间的范围,z具有1和3之间的范围,并且在第一孔密封剂的气氛中将基底暴露于UV辐射,以在介电层上形成第一密封层。