摘要:
The present invention relates to a system for implementing resource allocation in network communication and a method thereof. It effectively solves the end-to-end QOS problem through dividing a communication network into a plurality of QOS domains and managing them. In the present invention, only end-to-end path information is maintained at the QER of the QOS domain that is directly connected with the source/destination terminal, while only edge-to-edge resource reservation information for aggregate flows is maintained at other QERs, thus significantly reducing flow state information maintained at the network nodes as well as overhead of signaling protocol processing and storage at the network nodes.
摘要:
An improved receiver and method estimate one or more parameters, such as amplitude and signal-to-noise ratio, of a received signal, such as an M-QAM or q-ASK signal. The amplitude of an M-QAM signal is estimated based upon known or ascertainable phase information regarding a plurality of transmitted symbols. The amplitude of a q-ASK signal is estimated based upon known or ascertainable magnitude information regarding a plurality of transmitted symbols. In another embodiment, the amplitude of an M-QAM or q-ASK signal is estimated based on statistical knowledge of the amplitude of the transmitted symbols. Other embodiments estimate amplitude, noise power, and signal-to-noise ratio of a received signal utilizing second-order and fourth-order moments of received samples, a maximum likelihood searching process, or a Kurtosis estimation process.
摘要:
The invention is drawn to novel macrolide compounds of formula I having antibiotic and antineoplastic activities, useful as medicaments and/or agrochemicals for microorganism infections, in particularly for infectious diseases involving drug-resistant Staphylococcus, and for treatment of human and animal cancers.
摘要:
A receiver or an integrated circuit (IC) incorporated therein includes a fast Fourier transform (FFT)-based (or hybrid FFT-based) sliding window block level equalizer (BLE) for generating equalized samples. The BLE includes a noise power estimator, first and second channel estimators, an FFT-based chip level equalizer (CLEQ) and a channel monitor unit. The noise power estimator generates a noise power estimate based on two diverse sample data streams. The channel estimators generate respective channel estimates based on the sample data streams. The channel monitor unit generates a first channel monitor signal including truncated channel estimate vectors based on the channel estimates, and a second channel monitor signal which indicates an approximate rate of change of the truncated channel estimate vectors. The FFT-based CLEQ generates the equalized samples based on the noise power estimate, one-block samples of the first and second sample data streams, the channel estimates and the monitor signals.
摘要:
Methods, systems and kits are provided for detecting molecules expressing a selected epitope in a sample through use of an epitope detector containing a single chain Fv for the selected epitope or a constrained epitope specific CDR, CDR mimetic or engineered CDR structure attached to an oligonucleotide.
摘要:
An improved system and method for estimating one or more parameters, such as amplitude and signal-to-noise ratio, of a received signal, such as an M-QAM or q-ASK signal, is set forth herein. The amplitude of an M-QAM signal is estimated based upon known or ascertainable phase information regarding a plurality of transmitted symbols. The amplitude of a q-ASK signal is estimated based upon known or ascertainable magnitude information regarding a plurality of transmitted symbols. In another embodiment, the amplitude of an M-QAM or q-ASK signal is estimated based on statistical knowledge of the amplitude of the transmitted symbols. Other embodiments of the present invention estimate amplitude, noise power, and signal-to-noise ratio of a received signal utilizing second-order and fourth-order moments of received samples, a maximum likelihood searching process, or a Kurtosis estimation process.
摘要:
A method for differential phase evaluation of M-ary communication data is employed in which the data consists of N sequential symbols r1 . . . rN, each having one of M transmitted phases. Selected sequences of N−1 elements that represent possible sequences of phase differentials are evaluated using multiple-symbol differential detection. Using r1 as the reference for each phase differential estimate, sN−1 phase differential sequences are selected in the form (P2i, P3i, . . . , PNi) for i=1 to s for evaluating said symbol set, where s is predetermined and 1
摘要:
A method for differential phase evaluation of M-ary communication data is employed in which the data consists of N sequential symbols r1 . . . rN, each having one of M transmitted phases. Selected sequences of N−1 elements that represent possible sequences of phase differentials are evaluated using multiple-symbol differential detection. Using r1 as the reference for each phase differential estimate, sN−1 phase differential sequences are selected in the form (P2i, P3i, . . . , PNi) for i=1 to s for evaluating said symbol set, where s is predetermined and 1