Abstract:
A method and system operable to implement a multiple range, and optionally one-dimensional, transport scheduling process suitable to facilitate signal transport over a network for a variety of traffic types with different service requirements where two-dimensional mapping across frequency and/or time is required.
Abstract:
Systems and methods implement Data-Over-Cable Service Interface Specification (DOCSIS) time protocol (DTP) calibration. A testing laboratory measures a DTP timing error for a test configuration representative of a DOCSIS network to determine DTP calibration data. The DTP calibration data is stored in association with a DTP calibration testing setup of the DOCSIS network in a DTP calibration platform. An operational cable modem termination system (CMTS) conforming to the DTP calibration testing setup retrieves and applies the DTP calibration data from the DTP calibration platform based on the DTP calibration testing setup.
Abstract:
Systems and methods presented herein provide for reducing latency in wireless service through a communication link comprising a Modem Termination System (MTS) and a modem. The communication link is coupled with a virtualized wireless link. In one embodiment, a method includes transferring a buffer status report (BSR) from a user equipment (UE) through the communication link to a control portion of the virtualized wireless link, generating a wireless grant to allow the data of the UE through virtualized wireless link, and generating a backhaul grant for the UE to transfer data through the communication link based on the wireless grant information.
Abstract:
One wireless telecommunications system includes a Mobile Central Office (MCO) for capacity sharing via a master scheduling system. The MCO is communicatively coupled to a plurality of wireless base stations, each being operable to handle a session from a wireless device and to handoff the session to another wireless base station when the wireless device moves into a range of the other base station. Each of the wireless base stations is operable to convey capacity information to the master scheduling system through the MCO, and to acquire capacity from one or more wireless base stations of another MCO when directed by the master scheduling system.
Abstract:
A method for communicating between base stations of two different wireless communication networks may include (1) transmitting a setup request message from a first base station of a first wireless communication network to a second base station of a second wireless communication network, the setup request message including a first user equipment (UE) device context format of the first wireless communication network and a second UE device context format of the second wireless communication network; (2) receiving, at the first base station, a setup response from the second base station, the setup response including a union of the first UE device context format and the second UE device context format; and (3) at the first base station, communicating with the second base station according to the union of the first UE device context format and the second UE device context format.
Abstract:
Systems and methods presented herein provide for multichannel communications. In one embodiment, a communication system includes a plurality of traffic channels operable to link to a UE via one or more communication networks. The communication system also includes a traffic processor operable to receive a request for data from the UE, to evaluate the traffic channels based on the requested data, to select a first and a second of the traffic channels based on the evaluation, and to convey the data over the first and second traffic channels to the UE.
Abstract:
Systems and methods presented herein provide for reducing latency in wireless service through a communication link comprising a Modem Termination System (MTS) and a modem. The communication link is coupled with a virtualized wireless link. In one embodiment, a method includes transferring a buffer status report (BSR) from a user equipment (UE) through the communication link to a control portion of the virtualized wireless link, generating a wireless grant to allow the data of the UE through virtualized wireless link, and generating a backhaul grant for the UE to transfer data through the communication link based on the wireless grant information.
Abstract:
Systems and methods presented herein provide for improving communications when encountering aggressive communication systems. In one embodiment, a communication system comprises a wireless access point operable to link a first user equipment (UE) to a WiFi network via a contention based mode that directs the WAP to share radio frequency spectrum with other WAPs. The communication system also comprises a communication processor operable to query at least the first UE to determine aggressive radio frequency (RF) band activity by another communication system in range of the WAP, to determine that the aggressive RF band activity by the other communication system is pushing communication with the first UE via the WAP below a threshold level, and based on the determination, direct the WAP to switch to a contention free mode to communicate with the first UE in contention free mode.
Abstract:
A method for transmitting data through a multi-media communication network includes converting transmission entities into data symbols at a first communication device, transmitting the data symbols from the first communication device to a second communication device through at least two different types of communication media using only lower PHY layers of the at least two different types of communication media, and converting the data symbols into transmission entities at the second communication device. A network implementing a universal data link includes a first communication device configured to convert transmission entities into data symbols, a second communication device configured to convert the data symbols into transmission entities, at least a first communication medium and a second communication medium communicatively coupled between the first communication device and the second communication device, and a first physical-layer translator configured to translate data symbols without converting the data symbols into transmission entities. In order to reduce processing time and end-to-end latency, the physical-layer translator only performs demodulation and modulation operations, optionally also equalization.
Abstract:
A method for transmitting data through a multi-media communication network includes converting transmission entities into data symbols at a first communication device, transmitting the data symbols from the first communication device to a second communication device through at least two different types of communication media using only lower PHY layers of the at least two different types of communication media, and converting the data symbols into transmission entities at the second communication device. A network implementing a universal data link includes a first communication device configured to convert transmission entities into data symbols, a second communication device configured to convert the data symbols into transmission entities, at least a first communication medium and a second communication medium communicatively coupled between the first communication device and the second communication device, and a first physical-layer translator configured to translate data symbols without converting the data symbols into transmission entities.