Snapshot replication operations based on incremental block change tracking

    公开(公告)号:US11836156B2

    公开(公告)日:2023-12-05

    申请号:US17644769

    申请日:2021-12-16

    CPC classification number: G06F16/275

    Abstract: A system according to certain aspects improves the process of performing snapshot replication operations (e.g., maintaining a mirror copy of primary data at a secondary location by generating snapshots of the primary data). The system can collect and maintain cumulative block-level changes to the primary data after each sub-interval of a plurality of sub-intervals between the snapshots. When a snapshot is generated, any changes to the primary data not reflected in the cumulative block-level changes are identified based on the snapshot and transmitted to the secondary location along with the cumulative block-level changes. By the time the snapshot is generated, some or all of the changes to the primary data associated with the given snapshot have already been included in the cumulative block-level changes, thereby reducing the time and computing resources spent to identify and collect the changes for transmission to the secondary location.

    Live browse cache enhacements for live browsing block-level backup copies of virtual machines and/or file systems

    公开(公告)号:US11593228B2

    公开(公告)日:2023-02-28

    申请号:US16870722

    申请日:2020-05-08

    Abstract: An illustrative approach accelerates live browse operations for block-level backup copies in a data storage management system. A cache storage area is maintained for locally storing and serving key data blocks, thus relying less on retrieving data on demand from backup copies. Live browse operations are used for populating the cache storage area for speedier retrieval during subsequent live browsing and/or file indexing of the same backup copy, and vice versa. The key data blocks cached while file indexing and/or live browsing an earlier backup copy help to pre-fetch corresponding data blocks of later backup copies, thus producing a beneficial learning cycle. The approach is especially beneficial for cloud and tape backup media, and is available for a variety of data sources and backup copies, including block-level backup copies of virtual machines (VMs) and block-level backup copies of file systems, including UNIX-based and Windows-based operating systems and corresponding file systems.

    Cross-hypervisor live mount of backed up virtual machine data

    公开(公告)号:US11467863B2

    公开(公告)日:2022-10-11

    申请号:US16937404

    申请日:2020-07-23

    Abstract: Illustrative systems and methods enable a virtual machine (“VM”) to be powered up at any hypervisor regardless of hypervisor type, based on live-mounting VM data that was originally backed up into a hypervisor-independent format by a block-level backup operation. Afterwards, the backed up VM executes anywhere anytime without needing to find a hypervisor that is the same as or compatible with the original source VM's hypervisor. The backed up VM payload data is rendered portable to any virtualized platform. Thus, a VM can be powered up at one or more test stations, data center or cloud recovery environments, and/or backup appliances, without the prior-art limitations of finding a same/compatible hypervisor for accessing and using backed up VM data. An illustrative media agent maintains cache storage that acts as a way station for data blocks retrieved from an original backup copy, and stores data blocks written by the live-mounted VM.

Patent Agency Ranking