摘要:
A method of ablating tissue in the heart to treat atrial fibrillation introduces into a selected atrium an energy emitting element. The method exposes the element to a region of the atrial wall and applies ablating energy to the element to thermally destroy tissue. The method forms a convoluted lesion pattern comprising elongated straight lesions and elongated curvilinear lesions. The lesion pattern directs electrical impulses within the atrial myocardium along a path that activates the atrial myocardium while interrupting reentry circuits that, if not interrupted, would cause fibrillation. The method emulates the surgical maze procedure, but lends itself to catheter-based procedures that do not require open heart surgical techniques. A composite structure for performing the method is formed using a template that displays in planar view a desired lesion pattern for the tissue. An array of spaced apart element is laid on the template. Guided by the template, energy emitting and non-energy emitting zones are formed on the elements. By overlaying the elements, the composite structure is formed, which can be introduced into the body to ablate tissue using catheter-based, vascular access techniques.
摘要:
A method of ablating tissue in the heart to treat atrial fibrillation introduces into a selected atrium an energy emitting element. The method exposes the element to a region of the atrial wall and applies ablating energy to the element to thermally destroy tissue. The method forms a convoluted lesion pattern comprising elongated straight lesions and elongated curvilinear lesions. The lesion pattern directs electrical impulses within the atrial myocardium along a path that activates the atrial myocardium while interrupting reentry circuits that, if not interrupted, would cause fibrillation. The method emulates the surgical maze procedure, but lends itself to catheter-based procedures that do not require open heart surgical techniques. A composite structure for performing the method is formed using a template that displays in planar view a desired lesion pattern for the tissue. An array of spaced apart element is laid on the template. Guided by the template, energy emitting and non-energy emitting zones are formed on the elements. By overlaying the elements, the composite structure is formed, which can be introduced into the body to ablate tissue using catheter-based, vascular access techniques.
摘要:
Systems and methods heat or ablate body tissue by positioning an electrode to transmit heat or ablation energy to a tissue region. The systems and methods measure a first temperature using a temperature sensing element associated with the electrode. The systems and methods also measure a second temperature using a temperature sensing element associated with the electrode. The systems and methods process at least one of the first and second temperatures to derive a prediction of maximum temperature of the tissue region. The systems and methods generate an output that controls the transmission of the heating or ablation energy based, at least in part, upon the maximum tissue temperature prediction.
摘要:
Systems and methods heat or ablate body tissue by positioning an electrode to transmit heat or ablation energy to a tissue region. The systems and methods measure a first temperature using a temperature sensing element associated with the electrode. The systems and methods also measure a second temperature using a temperature sensing element associated with the electrode. The systems and methods process at least one of the first and second temperatures to derive a prediction of maximum temperature of the tissue region. The systems and methods generate an output that controls the transmission of the heating or ablation energy based, at least in part, upon the maximum tissue temperature prediction.
摘要:
A method of ablating tissue in the heart to treat atrial fibrillation introduces into a selected atrium an energy emitting element. The method exposes the element to a region of the atrial wall and applies ablating energy to the element to thermally destroy tissue. The method forms a convoluted lesion pattern comprising elongated straight lesions and elongated curvilinear lesions. The lesion pattern directs electrical impulses within the atrial myocardium along a path that activates the atrial myocardium while interrupting reentry circuits that, if not interrupted, would cause fibrillation. The method emulates the surgical maze procedure, but lends itself to catheter-based procedures that do not require open heart surgical techniques. A composite structure for performing the method is formed using a template that displays in planar view a desired lesion pattern for the tissue. An array of spaced apart element is laid on the template. Guided by the template, energy emitting and non-energy emitting zones are formed on the elements. By overlaying the elements, the composite structure is formed, which can be introduced into the body to ablate tissue using catheter-based, vascular access techniques.
摘要:
Devices and methods for ablating body tissue use wire wound about a support body in adjacent windings to form one or more elongated electrodes. A connection couples the wire to a source of ablation energy for transmission by the elongated electrode to ablate tissue. The adjacent windings are spaced apart to impart enhanced flexibility to the elongated electrode during use.
摘要:
Systems and methods for ablating body tissue use an electrode for contacting tissue to form a tissue-electrode interface. The electrode is adapted to be connected to a source of ablation energy to conduct ablation energy for transmission by the electrode into tissue at the tissue-electrode interface. The electrode is preferably cooled. The systems and methods include multiple temperature sensing elements. One element senses tissue temperature. A second element senses electrode temperature. A third element senses the rate at which the electrode is cooled. The systems and methods control the supply of ablation energy to the electrode based, at least in part, upon the multiple temperatures sensed by the different temperature sensing elements.
摘要:
A device for creating the lesions in body tissue includes a support element having an electromagnetic energy emitting region. When caused to emit electromagnetic energy, the region creates a single continuous lesion that is long and thin, having a length that is substantially greater than its width.
摘要:
Systems and methods ablate tissue within the body using a flexible guide element having an axis. A mechanism flexes the element along its axis. The flexible element carries a region for emitting energy. The region creates a lesion having a contour that follows the flexure of the element. The region creates a single continuous lesion that is curvilinear, long and thin. Manipulating such systems and methods creates diverse, specially shaped lesions in body tissue.
摘要:
Systems and methods for ablating body tissue use an electrode for contacting tissue to form a tissue-electrode interface. The electrode is coupled to a source of ablation energy for transmitting ablation energy at a prescribed ablation power level into tissue to form, over a prescribed ablation time period, a therapeutic result. The therapeutic result includes a lesion that extends beneath the tissue-electrode interface to a boundary depth between viable and nonviable tissue and a maximum tissue temperature developed within the lesion between the tissue-electrode interface and the boundary depth. The systems and methods include an element to cool the electrode. An input element inputs a desired therapeutic result including at least a targeted lesion boundary depth. The systems and methods employ a processing element that retains a function correlating an observed relationship among lesion boundary depth, ablation power level, ablation time, actual or predicted sub-surface tissue temperature, and electrode temperature. The processing element compares the desired therapeutic result to the function. The processing element selects an operating condition based upon the comparison to achieve the desired therapeutic result without exceeding a prescribed actual or predicted sub-surface tissue temperature, at least in part by cooling the electrode to control electrode temperature while the electrode transmits ablation energy.