Abstract:
Methods for operating a light source of a scanning laser projector to reduce speckle and image flicker in projected images are disclosed. The methods generally include projecting an image comprising a plurality of frames with a light source of the scanning laser projector. Simultaneously, a speckle reduction sequence comprising uncorrelated speckle patterns and partially correlated speckle patterns is projected with the light source of the scanning laser projector. The speckle reduction sequence is projected by varying a property of an output beam of the light source of the scanning projector. The duration of the speckle reduction sequence may be less than about 0.04 seconds or from about 0.07 seconds to about 0.13 seconds.
Abstract:
An optical interrogation system is described herein that can interrogate a label-independent-detection (LID) biosensor and monitor a biological event on top of the biosensor without suffering from problematical parasitic reflections and/or problematical pixelation effects. In one embodiment, the optical interrogation system is capable of interrogating a biosensor and using an oversampling/smoothing algorithm to reduce oscillations in the estimated location of an optical resonance caused by the problematical pixelation effect which makes it easier to determine whether or not a biological event occurred on the biosensor.
Abstract:
An autostereoscopic display device includes a pixelated image source and an optical element. The pixelated image source is located along a pixel plane and includes a set of pixels and dark regions substantially filling a remainder of the pixelated image source. The pixels are arranged in a pixel array having a pixel duty factor that is defined as pixel size over pixel pitch along the pixel plane and has a value of 1/N. The optical element is located between the pixel plane and an observer plane and is configured to form a projection array of pixel projections on the observer plane. The projection array has a projection duty factor defined as pixel projection size over pixel projection pitch along the observer plane. The projection duty factor is substantially equal to 1 such that two adjacent ones of the pixel projections bound one another on the observer plane.
Abstract:
A laser projection system comprises: (i) a coherent light source including at least one laser configured to emit an output beam carrying signal data; (ii) a scanning optics, the scanning optics comprising at least one scanning reflector, the scanning reflector positioned in an optical path of the output beam; and (iii) a rotating polygon prism; wherein (a) the scanning reflector is configured to direct the output beam towards the polygon prism and scan the output beam across a projection surface; and (b) the polygon prism is configured to transmit the scanned output beam through its body, and create a virtual image of the scanning reflector, such that said virtual image of the scanning reflector is moving when said polygon prism rotates.
Abstract:
One embodiment of the device comprising: (i) a laser scanning projector that projects light on a diffusing surface illuminated by the scanning projector; (ii) at least one detector that detects, as a function of time, the light scattered by the diffusing surface and by at least one object entering area illuminated by the scanning projector; and (iii) an electronic device capable of (a) reconstructing, from the detector signal, an image of the object and of the diffusing surface and (b) determining variation of the distance between the object and the diffusing surface
Abstract:
A method of controlling a frequency-converted laser source is provided where the laser source comprises a laser cavity, an external optical feedback component, a wavelength selective component, and a wavelength conversion device and the method comprises driving a gain section of the laser cavity with a gain signal that comprises a data component and a modulation component. The modulation component of the gain signal comprises a gain modulation amplitude IMOD that is sufficient to shift the available cavity modes in the spectral domain such that lasing at several different cavity modes sequentially is established as the gain signal is modulated.
Abstract:
An optical interrogation system is described herein that can interrogate a label-independent-detection (LID) biosensor and monitor a biological event on top of the biosensor without suffering from problematical parasitic reflections and/or problematical pixelation effects. In one embodiment, the optical interrogation system is capable of interrogating a biosensor and using a low pass filter algorithm to digitally remove problematic parasitic reflections contained in the spectrum of an optical resonance which makes it easier to determine whether or not a biological event occurred on the biosensor. In another embodiment, the optical interrogation system is capable of interrogating a biosensor and using an oversampling/smoothing algorithm to reduce oscillations in the estimated location of an optical resonance caused by the problematical pixelation effect which makes it easier to determine whether or not a biological event occurred on the biosensor.
Abstract:
Glass inspection systems are provided for detecting particles and defects in or on a glass sheet or glass ribbon (2, 14). The system is mounted so that the surface (1) to be inspected is in the object plane of a reflective lens (10). The lens images a thin stripe area, long in the direction tangent to the lens circumference and short in the radial direction, onto a linescan camera (18). A line illuminator (12) can be mounted so that it illuminates the stripe area. To perform the inspection, the system is moved with respect to the glass in the direction perpendicular to the long axis of the stripe, either by moving the system over the glass or by moving the glass while the system is fixed. Image information is collected by the linescan camera during this motion and assembled into an image.
Abstract:
An optical system having an optical axis OA and comprising: a light source; a reflector; a lens component situated therebetween; and a receiver. The light source and the receiver are separated, situated substantially symmetrically and decentered with respect to the OA. The lens component collimates the light beam from the light source. The reflector intercepts the collimated beam and to reflects it to the receiver through the lens, the collimated beam being at an angle to the optical axis. The lens component is structured to provide on the receiver an image of the light source characterized by (i) 0.05
Abstract:
A laser projection system comprises: (i) a coherent light source including at least one laser configured to emit an output beam carrying signal data; (ii) a scanning optics, the scanning optics comprising at least one scanning reflector, the scanning reflector positioned in an optical path of the output beam; and (iii) a rotating polygon prism; wherein (a) the scanning reflector is configured to direct the output beam towards the polygon prism and scan the output beam across a projection surface; and (b) the polygon prism is configured to transmit the scanned output beam through its body, and create a virtual image of the scanning reflector, such that said virtual image of the scanning reflector is moving when said polygon prism rotates.