摘要:
A process includes preparing a solution including a silicon precursor or mixture of silicon precursors and a monomer or mixture of monomers; polymerizing the monomer to form a polymer-silicon precursor matrix; and pyrolyzing the polymer-silicon precursor matrix to form an electrochemically active carbon-coated silicon material.
摘要:
A method includes modifying a surface of an electrode active material including providing a solution or a suspension of a surface modification agent; providing the electrode active material; preparing a slurry of the solution or suspension of the surface modification agent, the electrode active material, a polymeric binder, and a conductive filler; casting the slurry in a metallic current collector; and drying the cast slurry.
摘要:
Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.
摘要:
Selenium or selenium-containing compounds may be used as electroactive materials in electrodes or electrochemical devices. The selenium or selenium-containing compound is mixed with a carbon material.
摘要:
Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.
摘要:
A process for forming a surface-treatment layer on an electroactive material includes heating the electroactive material and exposing the electroactive material to a reducing gas to form a surface-treatment layer on the electroactive material, where the surface-treatment layer is a layer of partial reduction of the electroactive material.
摘要:
The invention relates to an improvement in a cell which is normally susceptible to damage from overcharging comprised of a negative electrode, a positive electrode, and an electrolyte comprised of an overcharge protection salt carried in a carrier or solvent. Representative overcharge protection salts are embraced by the formula: MaQ where M is an electrochemically stable cation selected from the group consisting of alkali metal, alkaline earth metal, tetraalkylammonium, or imidazolium groups, and Q is a borate or heteroborate cluster and a is the integer 1 or 2.
摘要:
Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.
摘要:
A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO2.(1−x)Li2M′O3 in which 0
摘要:
A number of materials with the composition Li1+xNiαMnβCoγM′δO2−zFz (M′=Mg,Zn,Al,Ga,B,Zr,Ti) for use with rechargeable batteries, wherein x is between about 0 and 0.3, α is between about 0.2 and 0.6, β is between about 0.2 and 0.6, γ is between about 0 and 0.3, δ is between about 0 and 0.15, and z is between about 0 and 0.2. Adding the above metal and fluorine dopants affects capacity, impedance, and stability of the layered oxide structure during electrochemical cycling. Another aspect of the invention includes materials with the composition Li1+xNiαCoβMnγM′δOyFz (M′=Mg,Zn,Al,Ga,B,Zr,Ti), where the x is between 0 and 0.2, the α between 0 and 1, the β between 0 and 1, the γ between 0 and 2, the δ between about 0 and about 0.2, the y is between 2 and 4, and the z is between 0 and 0.5.
摘要翻译:具有以下组成的多种材料:Li 1 + x Ni 2 O 3 N 2 N 2 C 1 N 2 (M'= Mg,Zn,Al,Ga,B,Zr,Ti),用于可再充电电池,其中 x在约0和0.3之间,α在约0.2和0.6之间,β在约0.2和0.6之间,γ在约0和0.3之间,δ在约0和0.15之间,z在约0和0.2之间。 添加上述金属和氟掺杂剂影响电化学循环期间层状氧化物结构的能力,阻抗和稳定性。 本发明的另一方面包括具有以下组成的材料:具有下式的材料:Li 1 + x Ni 2 O 3 M 1 M 2 M 2 M' (M'= Mg,Zn,Al,Ga,B,Zr,Ti),其中x在 0和0.2之间,α在0和1之间,β在0和1之间,γ在0和2之间,δ在约0和约0.2之间,y在2和4之间,z在0和0.5之间 。