Abstract:
An apparatus is described, including: a signal processing circuit adapted to process an input signal to obtain an output signal; a sensor element for sensing a predetermined physical quantity, wherein the sensor element is adapted to generate a sensor signal in response to the predetermined physical quantity; wherein the signal processing unit is adapted to process the input signal to obtain the output signal depending on the sensor signal; and wherein the apparatus further comprises an evaluation circuit adapted to evaluate the sensor signal and to generate an indication signal indicating an abnormal operating condition in case the sensor signal does not fulfill a predetermined normal operation criterion.
Abstract:
Embodiments relate to an ultra-low-power, high-voltage integrated circuit (IC) that also has high electromagnetic compatibility (EMC). Embodiments address the desire for an ultra-low-power, high-voltage IC that also has high EMC and comprise a high-voltage EMC protection circuit with normal current consumption coupled to an ultra-low-power, low-voltage oscillator that controls a sleep/wake, or duty, cycle of a high-voltage circuit.
Abstract:
A system includes a sensing system, a first chopped circuit, a second chopped circuit, and a multiplexer. The sensing system is configured to provide input signals. The first chopped circuit is configured to switch in response to the input signals crossing a first limit and to provide a first output signal that is valid during some chopping phases. The second chopped circuit is configured to switch in response to the input signals crossing a second limit and to provide a second output signal that is valid during other chopping phases. The multiplexer is configured to switch between the first output signal and the second output signal to provide a valid output signal during all chopping phases.
Abstract:
A system including a first transistor, a first capacitor and a circuit. The first transistor has a first control input and is configured to regulate an output voltage. The first capacitor is coupled at one end to the first control input and at another end to a circuit reference. The circuit is configured to provide a first voltage to the first control input, where the first voltage includes an offset voltage that is referenced to the output voltage and adjusted to compensate for variations in the first transistor.
Abstract:
Embodiments relate to IC current sensors fabricated using thin-wafer manufacturing technologies. Such technologies can include processing in which dicing before grinding (DBG) is utilized, which can improve reliability and minimize stress effects. While embodiments utilize face-up mounting, face-down mounting is made possible in other embodiments by via through -contacts. IC current sensor embodiments can present many advantages while minimizing drawbacks often associated with conventional IC current sensors.
Abstract:
One embodiment of the present invention relates to a method and apparatus to perform a low power activation of a system by measuring the slope of a digital signal corresponding to a motion sensor measurement value. In one embodiment, a low power activation circuit is coupled to magnetic motion sensor configured to output a magnetic signal proportional to a measured magnetic field. The low power activation circuit may comprise a digital tracking circuit configured to provide a digital signal that tracks the magnetic field and a difference detector configured to detect a difference between a current digital signal and a prior digital signal stored in a digital storage means. If the detected difference is larger than a digital reference level, an activation signal is output to awaken a system from a sleep mode.
Abstract:
A system including a first circuit, a second circuit, and a feedback circuit. The first circuit is configured to provide input signals. The second circuit is configured to receive the input signals and provide digital output signals that correspond to the input signals. The feedback circuit includes a chopping circuit, an integrator circuit, and a digital to analog converter circuit. The chopping circuit is configured to receive the digital output signals and provide error signals that represent ripple error in the digital output signals. The integrator circuit is configured to accumulate the error signals and provide an accumulated error signal. The digital to analog converter circuit is configured to convert the accumulated error signal into an analog signal that is received by the second circuit to reduce the ripple error.
Abstract:
Embodiments relate to systems and methods for sensor self-diagnostics using multiple signal paths. In an embodiment, the sensors are magnetic field sensors, and the systems and/or methods are configured to meet or exceed relevant safety or other industry standards, such as SIL standards. For example, a monolithic integrated circuit sensor system implemented on a single semiconductor ship can include a first sensor device having a first signal path for a first sensor signal on a semiconductor chip; and a second sensor device having a second signal path for a second sensor signal on the semiconductor chip, the second signal path distinct from the first signal path, wherein a comparison of the first signal path signal and the second signal path signal provides a sensor system self-test.
Abstract:
An apparatus is described, including: a signal processing circuit adapted to process an input signal to obtain an output signal; a sensor element for sensing a predetermined physical quantity, wherein the sensor element is adapted to generate a sensor signal in response to the predetermined physical quantity; wherein the signal processing unit is adapted to process the input signal to obtain the output signal depending on the sensor signal; and wherein the apparatus further comprises an evaluation circuit adapted to evaluate the sensor signal and to generate an indication signal indicating an abnormal operating condition in case the sensor signal does not fulfill a predetermined normal operation criterion.
Abstract:
Embodiments relate to stress sensing devices and methods. In an embodiment, a sensor device includes an active layer; and at least three contacts spaced apart from one another in the active layer, the at least three contacts being coupleable in a first configuration for a first operating mode of the sensor device in which a current in the active layer has a first ratio of horizontal to vertical components with respect to a die surface and in a second configuration different from the first for a second operating mode of the sensor device in which a current in the active layer has a second ratio of horizontal to vertical components, wherein a ratio of a resistance between at least two of the contacts in the first operating mode and a resistance between at least two of the contacts in the second operating mode is related to mechanical stress in the sensor device.