Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus may be a UE that acquires information regarding an interfering non-serving cell and uses the information to improve decoding of serving cell signals. The method includes receiving, from a serving evolved Node B (eNB), information that includes one or more transmission characteristics of at least one non-serving cell and performing at least one of interference cancellation, demodulation, or provides an improved channel quality indicator (CQI) based on the received information.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. The apparatus may be a base station. The apparatus may transmit a first grant to a UE. The apparatus may determine whether an acknowledgment to the first grant is received. When the acknowledgment to the first grant fails to be received by the apparatus, the apparatus may transmit, to the UE, a second grant including information regarding the first grant. In another aspect, an apparatus may be a UE. The apparatus may receive a first grant. The first grant may include a first Mayday bit. The apparatus may receive a second grant. The second grant may include a TTI count corresponding to a number of unacknowledged TTIs. The second grant may further include a second Mayday bit. The apparatus may determine an acknowledgment based on the TTI count and the first and second Mayday bits.
Abstract:
Reference signals may not uniformly span over time and/or frequency on a resource unit. For example, reference signals may non-uniformly occupy symbols of a subframe. Alternatively, reference signals normally transmitted over certain tones of a subframe may have to be punctured to avoid collisions with a PSS and/or SSS transmitted over the same tones. Consequently, a UE may only be able to use a subset of reference signal tones for performing channel estimation. Accordingly, a method, an apparatus, and a computer program product for wireless communication are provided for improving channel estimation under a non-uniform signal pattern. The apparatus indicates to a UE to utilize a subset of reference signals to derive a channel estimate for demodulating data in a specific subframe, and transmits a plurality of subframes, the plurality of subframes including the reference signals and the specific subframe, the specific subframe including a PSS and/or SSS.
Abstract:
In order to cancel any interference due to the second signal (e.g., from a non-serving cell) from a signal received at a UE, without receiving additional control information, the UE blindly estimates parameters associated with decoding the second signal. This may include determining a metric based on sets of symbols associated with the signals in order to determine parameters for the second signal, e.g., the transmission mode, modulation format, and/or spatial scheme of the second signal. The parameters for the signal may be determined based on a comparison of the metric with a threshold. When a spatial scheme and a modulation format is unknown, the blind estimation may include determining a plurality of constellations of possible transmitted modulated symbols associated with a potential spatial scheme and modulation format combination. Interference cancellation can be performed using the constellations and a corresponding probability weight.
Abstract:
A method, a computer program product, and an apparatus are provided. The methods and apparatus for wireless communication include receiving a transmission, the transmission including a plurality of resource element groups (REGs). Aspects of the methods and apparatus include selecting a set of REGs from the plurality of REGs, the set of REGs including at least one REG and determining a traffic to pilot ratio (TPR) for the set of REGs based on the transmission and reference signals in the transmission. Aspects of the methods and apparatus include determining whether the set of REGs includes at least one of control information or data based on the TPR and canceling at least one of control information or data from the set of REGs based on the TPR.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive, based at least in part on one or more performance metrics associated with an artificial intelligence (AI) model associated with wireless communication, assistance information associated with an expected performance of the AI model. The UE may assess, based at least in part on the assistance information, the expected performance of the AI model. Numerous other aspects are described.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may communicate, with a network entity, an indication of operation of an artificial intelligence (AI) or (ML) model at the UE and/or the network entity. Based on the indication of the operation of the AI or ML model, the UE may communicate, with the network entity, an indication of the QCL relation between the AI or ML model and reference signal communicated by the UE, a physical channel communicated by the UE, an antenna port of the network entity, or an antenna port of the UE. The QCL relation may indicate the radio characteristics applicable to the AI or ML model. The QCL relation may indicate the radio characteristics applicable to the AI or ML model.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive a configuration that includes one or more mapping rules, each of the one or more mapping rules indicating a mapping between one or more reference signal received power (RSRP) measurements, associated with one or more reference signal resources, and one or more indices, associated with one or more feature input vectors for a machine learning model. The UE may initiate a beam prediction based at least in part on the one or more mapping rules. Numerous other aspects are described.
Abstract:
Position determination of a user equipment (UE) is supported using channel measurements obtained for Wireless Access Points (WAPs), wherein the channel measurements are for Line of Sight (LOS) and Non-LOS (NLOS) signals. Based on WAP almanac information and the channel measurements, channel parameters indicative of positions of signal sources relative to a first position of a UE may be determined. Using the first position of the UE and an association of the signal sources with corresponding channel parameters, a second position of the UE may be determined. The position of the UE may be a probability density function. Additionally, position information for signal sources may be determined, such as a probability density function, as well as signal blockage probability and an antenna geometry and the WAP almanac information may be updated accordingly.
Abstract:
Certain aspects of the present disclosure provide techniques for reporting channel state information (CSI). According to certain aspects, a method for wireless communications by a user equipment (UE) generally includes generating channel state information (CSI) comprising a (at least one) fractional rank indication (RI) value for a set of candidate ranks, a first indication of a first layer or first singular vector, and a second indication of a second layer or second singular vector and transmitting the CSI to a network entity.