Abstract:
A method for receiving downlink control information (DCI) in a communication system is provided. The method includes identifying a scaling parameter based on a function using a size of an active bandwidth part and a size of an initial bandwidth part, when the size of the active bandwidth part is larger than the size of the initial bandwidth part and a size for the DCI of DCI format 1_0 in a user equipment (UE) specific search space (USS) is derived from the size of the initial bandwidth part and the DCI of DCI format 1_0 is applied to the active bandwidth part, and identifying a length of contiguously allocated resource blocks of the allocated resource associated with the active bandwidth part based on a length of contiguously allocated resource blocks associated with the initial bandwidth part and the scaling parameter.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting a higher data rate than a 4G communication system such as LTE. According to an embodiment of the present invention, a method for a first base station in a first communication system comprises the steps of: identifying information related to a resource which can be used by a second base station in a second communication system; generating a message including the information related to the resource which can be used by the second base station; and transmitting the signal to the second base station.
Abstract:
The disclosure relates to a communication method and system for converging a 5th-generation (5G) communication system for supporting higher data rates beyond a 4th-generation (4G) system with a technology for internet of things (IoT). The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method and apparatus that reduce power consumption of the terminal and increase resource utilization efficiency of the base station through resource sharing between the data channel and the control channel are provided.
Abstract:
A random access method and an apparatus of a terminal for performing random access procedure to multiple base stations in parallel in a Long Term Evolution (LTE) system supporting dual connectivity are provided. The method includes determining whether a first preamble transmission to a first cell of a first base station is overlapped with a second preamble transmission to a second cell of a second base station in a time domain, determining, when the first preamble transmission is overlapped with the second preamble transmission in the time domain, whether a sum of transmit powers calculated for the first and second preamble transmissions is greater than a maximum allowed transmit power of the terminal, and controlling, when the sum of the first and second preamble transmit powers is greater than the maximum allowed transmit power, the transmit power calculated for the second preamble transmission.
Abstract:
A communication technique of fusing a 5th generation (5G) communication system for supporting higher data transmission rate beyond a 4th generation (4G) system with an Internet of Things (IoT) technology and a system thereof are provided. The communication technique may be applied to intelligent services (e.g., smart home, smart building, smart city, smart car or connected car, health care, digital education, retail business, security and safety related service, or the like) based on the 5G communication technology and the IoT related technology. In order to support sufficient uplink coverage, two structures of an uplink control channel and a multiplexing method with other channels, a method in which long term evolution (LTE) and 5G systems coexist in a single carrier, and a method for reducing an overhead of downlink control information are provided.
Abstract:
A discovery signal transmission/reception method and an apparatus for improving energy efficiency of the system are provided. The discovery signal transmission method of a base station in a mobile communication system according to the present disclosure includes acquiring a discovery signal configuration of a neighbor cell, transmitting the discovery signal configuration to a terminal, receiving a measurement report including a result of measurement on a discovery signal of the neighbor from the terminal, the measurement being performed based on the discovery signal configuration, and determining whether to make a handover decision for the terminal based on the measurement report. The discovery signal transmission/reception method of the present disclosure is advantageous in improving energy efficiency of a mobile communication system.
Abstract:
A method and an apparatus for transmitting uplink/downlink data on time division duplexing (TDD) carriers are provided. The method includes transmitting to a base station in a primary cell (PCell) and a secondary cell (SCell), a TDD uplink (UL)/downlink (DL) configuration of the PCell having a DL subframe super-set or UL subset that are common in the SCell and the PCell and a TDD UL-DL configuration differing from each other, receiving data at a first subframe in the SCell, and transmitting, when a UL subframe set of the SCell is a subset of a UL subframe of the PCell, a feedback corresponding to the data at a subframe predefined in association with the first subframe in the PCell according to the TDD UL-DL configuration of the SCell. The method supports both the self-scheduling and cross-carrier scheduling of the UE using carriers of different TDD configurations.
Abstract:
A method of defining physical channel transmit/receiving timings and resource allocation is provided for use in a Time Division Duplex (TDD) communication system supporting carrier aggregation. A method for receiving, at a base station, a Hybrid Automatic Repeat Request (HARQ) acknowledgement from a terminal in a Time Division Duplex (TDD) system supporting carrier aggregation of a primary cell and at least one secondary cell includes transmitting a downlink physical channel through one of the primary and secondary cells, receiving the HARQ acknowledgement corresponding to the downlink physical channel of the primary cell at a first timing predetermined for the primary cell, and receiving the HARQ acknowledgement corresponding to the downlink physical channel of the secondary cell at second timing, wherein the second timing is determined according to the first timing.
Abstract:
A method of transmitting channel information by a User Equipment (UE) when an uplink sub-frame is used for downlink transmission in a communication system using a dynamic Time Division Duplex (TDD) UpLink-DownLink (UL-DL) configuration is provided. The method includes receiving reconfiguration information for reconfiguration of TDD uplink and downlink from an evolved Node B (eNB), measuring interference in a first sub-frame changed from an uplink sub-frame to a downlink sub-frame by the reconfiguration, and transmitting information on interference measured in only the first sub-frame to the eNB in an uplink sub-frame according to a predetermined timing.
Abstract:
A method by a terminal, a method by a base station, a terminal, and a base station are provided. The method by the terminal includes receiving system information including first time division duplex (TDD) configuration information; receiving control information via a higher layer signaling; monitoring a physical downlink control channel (PDCCH) in a first subframe identified based on the control information; and identifying second TDD configuration information based on the monitoring result. The method by the base station includes transmitting system information including first time division duplex (TDD) configuration information; transmitting control information via a higher layer signaling; transmitting downlink control information on a physical downlink control channel (PDCCH) in a first subframe identified based on the control information, wherein the downlink control information is used to identify second TDD configuration information.