Abstract:
A method of supporting handover of a terminal by a mobility management entity (MME) of a mobile communication system is provided. The method includes receiving, from a base station, a first message for handover to another network. The first message includes information on a cell to which the terminal is handed over. The method also includes transmitting, to a server, a second message for reporting information related to a location of the terminal and for providing a location continuity based on the first message. A terminal having both a 3GPP communication function and a WiFi function automatically switches on and off a WLAN according to a location, setting, or a pattern of a user, thereby preventing unnecessary battery consumption or performance deterioration and searching for an available WLAN in advance to access the WLAN.
Abstract:
A method and apparatus of selecting profiles is provided that provides communication services of a terminal equipped with embedded Universal Integrated Circuit Card (eUICC) (or embedded Subscriber Identity Module (eSIM)) and Universal Integrated Circuit Card (UICC). The method of selecting a profile in a terminal including a plurality of subscriber identity module (SIMs) that differ from each other in type, includes selecting, when sensing a profile changing event, one of the plurality of SIMs according to a preset rule, selecting one of a plurality of profiles stored in the plurality of SIMs, and applying the selected profile to the terminal.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.Systems and methods provide a service that effectively transmits or receives data simultaneously using a 3GPP system, such as Long Term Evolution (LTE), and a non-3GPP system, such as a Wireless Local Area Network (WLAN), in a network where the 3GPP system and the non-3GPP system coexist. Particularly, this is a technology of selecting an access network through which data is to be transmitted based on a user's preference and a network condition so as to improve the quality of a service that a user experiences during data transmission.
Abstract:
The present invention relates to a method and an apparatus for transmitting data to user equipment through not only a current base station cell but also a neighboring base station cell via inter-eNB CA in a wireless communication system. A method for transmitting data though carrier aggregation in the wireless communication system, according to the present invention, comprises the steps of: a first base station transreceiving data with a terminal through at least two PDN connections; the first base station transmitting a carrier aggregation request message to a second base station for aggregating carriers, when the first base station determines to carry out inter-eNB carrier aggregation; the first base station receiving a carrier aggregation reply message from the second base station in response to the carrier aggregation request message; the first base station performing an RRC reconfiguration process with the terminal to notify to the terminal of the determination to perform the inter-eNB carrier aggregation; and the first base station transmitting a path change request message to a mobile management entity to correct a data transreceiving path, so that data on at least one PDN connection from among the PDN connections is transreceived through the second base station.
Abstract:
A method of supporting handover of a terminal by a mobility management entity (MME) of a mobile communication system is provided. The method includes receiving, from a base station, a first message for handover to another network. The first message includes information on a cell to which the terminal is handed over. The method also includes transmitting, to a server, a second message for reporting information related to a location of the terminal and for providing a location continuity based on the first message. A terminal having both a 3GPP communication function and a WiFi function automatically switches on and off a WLAN according to a location, setting, or a pattern of a user, thereby preventing unnecessary battery consumption or performance deterioration and searching for an available WLAN in advance to access the WLAN.
Abstract:
A resource management method and apparatus allows or restricts use of some or all of the resources of entities of a wireless communication system. A radio resource management method of a radio access point includes receiving a measurement report from a terminal, selecting another radio access point for serving the terminal in cooperation with the serving radio access point based on the measurement report and a Handover Restriction List (HRL), and transmitting a request for serving the terminal to the selected another radio access point.
Abstract:
Disclosed are a method and device for controlling the rate of data transmitted/received by a terminal in a wireless communication system. A method according to an embodiment of the present disclosure is a data rate control method of a terminal in an access and mobility management function (AMF) device of a wireless communication system, wherein the method may include the operations of: receiving, from the terminal, a registration request message, including an identifier of the terminal, transmitting the registration request message including the identifier of the terminal to a unified data management (UDM), receiving subscription information, including network slice information which can be allocated to the terminal, from the UDM, querying a policy control function (PCF) device about policy association of the terminal including the network slice information, receiving a policy association response message, including information about restricting the total transmission rate of serving network slices, from the PCF, and providing the information about restricting the total transmission rate of the serving network slices to a base station of the terminal.
Abstract:
A method performed by an access and mobility management function (AMF) in a wireless communication system according to an embodiment of the present disclosure may include receiving a network registration request message from a terminal, determining whether or not the terminal requires support for multiple-radio network access, in case that the terminal requires support for the multiple-radio network access, requesting a network repository function (NRF) for information about an AMF supporting the multiple-radio network access, receiving, from the NRF, information about at least one AMF supporting the multiple-radio network access, and determining an AMF to perform a network registration procedure for the terminal, on the basis of the information about the at least one AMF.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The disclosure relates to a method and an apparatus for authenticating an unmanned aerial service (UAS) terminal using a mobile communication system and authorizing a UAS in consideration of information about pairing between UAS terminals. According to a provided method, a UAS operator can authenticate a UAS terminal using a mobile communication system without any additional process and can control a UAS to be provided between an unmanned aerial vehicle (UAV) and a UAV controller (UAC) which are allowed by the operator.
Abstract:
The disclosure relates to a 5th generation (5G) or pre-5G communication system for supporting a data transmission rate higher than that of a 4th generation (4G) system, such as long-term evolution (LTE). The disclosure provides a method for operating a terminal in a wireless communication system, the method including: performing communication with an access and mobility management function (AMF) in a first network; and transmitting a radio resource control (RRC) message including information on the AMF in a second network.