Abstract:
A catheter includes a thermal unit provided at its distal end and configured to receive a thermal transfer fluid. The thermal unit is configured to cause formation of ice particles in perivascular renal nerve tissue adjacent the thermal unit and warm tissue of the renal artery adjacent the thermal unit to a temperature above freezing while ice particles remain formed in the perivascular renal nerve tissue. A vibration source is configured to generate vibration of the ice particles sufficient to disrupt perivascular renal nerve tissue and terminate sympathetic renal nerve activity with no or negligible damage to thawed renal artery tissue. The vibration source may be configured to generate vibration sufficient to nucleate ice formation within at least the perivascular renal nerve tissue so that ice particles form throughout the perivascular renal nerve tissue adjacent the thermal unit.
Abstract:
An ablation catheter is dimensioned for advancement through a vessel of the body. The catheter includes a lumen configured to receive a pressurized electrically conductive fluid. A nozzle is fluidly coupled to the distal end of the pressurizable lumen and configured to direct a jet of the pressurized conductive fluid at a wall of a target vessel, such as a renal artery, to create or expand a hole through the target vessel and to fill the hole and at least some of the space adjacent to the hole with the conductive fluid. An electrical conductor extends at least partially along the catheter and terminates proximate or at the distal end of the pressurizable lumen. The electrical conductor is configured to conduct radiofrequency energy to the conductive fluid sufficient to ablate target tissue, such as perivascular renal nerve tissue, proximate the hole.
Abstract:
A catheter includes a flexible shaft having a lumen arrangement and a length sufficient to access a target vessel of a patient. A balloon at the distal end of the shaft is fluidly coupled to the lumen arrangement. The balloon body comprises a first material and a second material different from the first material. The second material comprises a hydrophilic polymer that becomes electrically conductive in response to absorption of the conductive fluid. The fluid conductive regions facilitate perfusion of the conductive fluid through the balloon body to an inner wall of the target vessel during ablation of perivascular tissues. A cooling arrangement is configured for one of receiving a thermal transfer fluid from the lumen arrangement or facilitating perfusion of blood passing through the target vessel to cool the balloon body during ablation of the perivascular tissues.
Abstract:
A flange connection for an exhaust section of a gas turbine engine. The flange connection includes a stub flange attached to an exhaust manifold. The stub flange has a first axial face for engagement with the axial face of a cylinder flange extending radially from an exhaust cylinder. A plate structure attached to the cylinder flange is configured to provide axial retention of the stub flange to the axial face of the cylinder flange. The plate structure includes a resilient beam portion extending radially inwardly and engaging a second axial face of the stub flange. The stub flange is retained between the cylinder flange and the beam portion of the plate structure in an interference fit to provide three degrees of freedom of the stub flange relative to the exhaust cylinder.
Abstract:
A method of facilitating athletic training is disclosed herein. The method includes the step of projecting an image downwardly on a surface. The projected image displays a plurality of indicia including at least one position indicia corresponding to a participant of an athletic activity and at least one reference indicia at least partially spaced from the at least one position indicia.
Abstract:
Embodiments for selecting regions of memory are described. For example, in one embodiment a memory device having an array of memory cells includes an array selection block. The array selection block receives an input signal indicative of a region in the array of memory cells. The array selection block generates a selection signal to map the region to at least one physical location in the array of memory cells, based on the detection of the number of defects in that location.
Abstract:
High dynamic range image sensors and image reconstruction methods for capturing high dynamic range images. An image sensor that captures high dynamic range images may include an array of pixels having two sets of pixels, each of which is used to capture an image of a scene. The two sets of pixels may be interleaved together. As an example, the first and second sets of pixels may be formed in odd-row pairs and even-row pairs of the array, respectively. The first set of pixels may use a longer exposure time than the second set of pixels. The exposures of the two sets of pixels may at least partially overlap in time. Image processing circuitry in the image sensors or an associated electronic device may de-interlace the two images and may combine the de-interlaced images to form a high dynamic range image.
Abstract:
Embodiments for selecting regions of memory are described. For example, in one embodiment a memory device having an array of memory cells includes an array selection block. The array selection block receives an input signal indicative of a region in the array of memory cells. The array selection block generates a selection signal to map the region to at least one physical location in the array of memory cells, based on the detection of the number of defects in that location.