Abstract:
An imaging device with a plurality of imaging units is provided. The imaging device includes a supporting substrate, a flexible substrate and a movable unit. The supporting substrate is formed with a hard material, and the flexible substrate includes a plurality of imaging units positioned at least in a width direction. The flexible substrate is fixed at a first edge portion with the supporting substrate, while an opposite second edge portion of the flexible substrate is connected with the movable unit. The movable unit moves the opposite second edge portion of the flexible substrate in the width direction and bends or flattens the flexible substrate. A degree of curvature at which the flexible substrate is bent may vary based on a distance by which the movable unit moves in the width direction, so that a field of view (FOV) of the plurality of imaging units may be adjusted.
Abstract:
Disclosed herein are a novel dye for a photoelectric device and a photoelectric device comprising the dye. More particularly, the dye for a photoelectric device incorporates different quaternary ammoniums into a carboxyl or phosphoric acid-substituted bipyridyl ligand of the dye, and a photoelectric device comprising the same. The dye for a photoelectric device as disclosed herein exhibits improved photosensitivity and light absorbing characteristics, thereby making it possible to fabricate a highly efficient photoelectric device when the dye is included in the device.
Abstract:
A dispersant for a more concentrated carbon nanotube solution, and a composition including the same are provided. The dispersant may have a hydrophobic chain structure with head groups capable of surrounding carbon nanotube particles. The dispersant may adsorbed onto the carbon nanotube particles. The composition may include the dispersant, an aqueous liquid medium and a carbon nanotube. The composition may further include an additive. It may be possible to produce a more concentrated carbon nanotube solution exhibiting an increase in dispersion of the carbon nanotube particles and/or more stability.
Abstract:
The following discloses and describes a zero capacitor RAM as well as a method for manufacturing the same. The zero capacitor RAM includes an SOI substrate. This SOI substrate is composed of a stacked structure of a silicon substrate, an embedded insulation film and a silicon layer. This layer is patterned into line types to constitute active patterns. Moreover, a first insulation layer forms between the active patterns and gates form on the active patterns as well as the first insulation layer to extend perpendicularly to the active patterns. In addition, a source forms in the active pattern on one side of each gate, a drain forms in the active pattern on the other side of each gate which is achieved by filling a metal layer. Continuing, a contact plug forms between the gates on the source and an interlayer dielectric forms on the contact plug in addition to the gates Finally, a bit line forms on the interlayer dielectric to extend perpendicularly to the gates and come into contact with the drain.
Abstract:
Disclosed is a novel dye for use in a photoelectronic device, wherein the photoelectronic device is comprised of a photoanode comprising the dye. According to the novel dye, the dye is derived through the introduction of a group which narrows the dihedral angle of the dye ligand as well as through the introduction of conjugated groups. Since the dye has improved light sensitivity and absorption properties, it can be used to fabricate a photoelectronic device with high power conversion efficiency.
Abstract:
A bulk thermoelectric material having a structure in which migration of carriers is not inhibited but phonons are scattered is described. The bulk thermoelectric material includes: a bulk crystalline thermoelectric material matrix; and nanoparticles coated with a conductive material within the thermoelectric material matrix.
Abstract:
Disclosed herein are a metal oxide paste composition comprising a carboxylic ester dispersant and/or a phosphate dispersant, and a method for manufacturing a semiconductor electrode for solar cells using the same. The disclosed metal oxide paste composition improves the dispersibility of metal oxide nanoparticles. Thus, if it is used to manufacture a semiconductor electrode for solar cells, it will allow the increased adsorption of a dye, thus improving the photoelectric efficiency of the resulting solar cell.
Abstract:
Disclosed herein is a semiconductor electrode with improved power conversion efficiency through inhibition of recombination reactions of electrons. The semiconductor electrode comprises a transparent electrode consisting of a substrate and a conductive material coated on the substrate, and a metal oxide layer formed on the transparent electrode wherein the metal oxide layer contains a phosphate.Further disclosed is a solar cell employing the semiconductor electrode.
Abstract:
The following discloses and describes a zero capacitor RAM as well as a method for manufacturing the same. The zero capacitor RAM includes an SOI substrate. This SOI substrate is composed of a stacked structure of a silicon substrate, an embedded insulation film and a silicon layer. This layer is patterned into line types to constitute active patterns. Moreover, a first insulation layer forms between the active patterns and gates form on the active patterns as well as the first insulation layer to extend perpendicularly to the active patterns. In addition, a source forms in the active pattern on one side of each gate, a drain forms in the active pattern on the other side of each gate which is achieved by filling a metal layer. Continuing, a contact plug forms between the gates on the source and an interlayer dielectric forms on the contact plug in addition to the gates Finally, a bit line forms on the interlayer dielectric to extend perpendicularly to the gates and come into contact with the drain.
Abstract:
A method for fabricating a MEMS device having a fixing part fixed to a substrate, a connecting part, a driving part, a driving electrode, and contact parts, includes patterning the driving electrode on the substrate; forming an insulation layer on the substrate; patterning the insulation layer and etching a fixing region and a contact region of the insulation layer; forming a metal layer over the substrate; planarizing the metal layer until the insulation layer is exposed; forming a sacrificial layer on the substrate; patterning the sacrificial layer to form an opening exposing a portion of the insulation layer and the metal layer in the fixing region; forming a MEMS structure layer on the sacrificial layer to partially fill the opening, thereby forming sidewalls therein; and selectively removing a portion of the sacrificial layer by etching so that a portion of the sacrificial layer remains in the fixing region.