Abstract:
An array substrate includes a plate, a switching element, an insulating layer and a pixel electrode. The plate includes a pixel region, and the switching element is disposed on the plate. The insulating layer is disposed on the plate to include an opening for a multi-domain disposed in the pixel region and a contact hole. An electrode of the switching element is partially exposed through the contact hole. The pixel electrode is disposed on the insulating layer corresponding to the pixel region, an inner surface of the opening for the multi-domain and an inner surface of the contact hole so that the pixel electrode is electrically connected to the electrode of the switching element. Therefore, the viewing angle and the image display quality of the LCD apparatus are improved, and a manufacturing process is simplified.
Abstract:
A bus system, which may prevent data from being incorrectly transferred when an early termination occurs during a burst mode, may include a bus, for example, an advanced high-performance bus (AHB), at least one bus master device, a bus arbiter and at least one transfer mode selection circuit. The at least one bus master device may generate a burst cycle control signal, a transfer start signal and a bus control request signal for requesting control of the bus, and may be activated in response to a bus control grant signal, so as to exchange data via the bus. The bus arbiter may generate the bus control grant signal in response to the bus control request signal and provide the bus control grant signal to the bus master device. The at least one transfer mode selection circuit may convert a burst mode into a single mode to generate a selection signal, when the bus control grant signal is deactivated before a burst mode operation is completed.
Abstract:
A reflective-transmissive liquid crystal display (LCD) device with an improved display quality is achieved by forming a reflective area and a transmissive area having a cell gap greater than greater than that of the reflective area. A liquid crystal layer is disposed in a liquid crystal cell between the first and second substrates. The liquid crystal molecules are normally aligned at an angle equal to greater than about 45° with respect to a line parallel to the first substrate. The LCD device operates in a normally black mode.
Abstract:
A display substrate includes a base substrate on which a pixel area is defined. The pixel area includes a first sub-pixel area and a second sub-pixel area. A plurality of first electrode portions is disposed at a first interval in the first sub-pixel area, and a plurality of second electrode portions is disposed at a second interval in the second sub-pixel area. The first electrode portion has a first width, and the second electrode portion has a second width. The first width of the first electrode portion is different from the second width of the second electrode portion, or the first interval between adjacent first electrode portions is different from the second interval between adjacent second electrode portions.
Abstract:
A liquid crystal display, in accordance with the present invention, includes a first substrate having a thin film transistor and a first electrode formed thereon. The first electrode is electrically connected to the thin film transistor. A first insulating layer is formed on the first substrate including the thin film transistor and the first electrode and a window is formed in the first insulating layer, the window exposing a predetermined region of the first electrode. A second electrode is provided on the first insulating layer and electrically connected to the first electrode. A second substrate includes a third electrode formed thereon. A first gap is formed between a surface of the third electrode and a surface of the predetermined region of the first electrode, and a second gap is formed between the surface of the third electrode and a surface of the second electrode. A liquid crystal layer is interposed between the first gap and the second gap. Other embodiments are included as well as methods for forming the liquid crystal display of the present invention.
Abstract:
A localization system and method of a mobile robot using a camera and artificial landmarks in a home and a general office environment (or working zone) is provided. The localization system includes artificial landmarks having an LED flash function in an invisible wavelength band, a camera with a wide-angle lens, a module flashing landmarks attached at the ceiling and identifying positions and IDs of the landmarks from an image photographed by the camera having a filter, a module calculating position and orientation of the robot using two landmarks of the image in a stop state, a module, when a ceiling to which the landmarks are attached has different heights, a position of the robot, and a module, when a new landmark is attached in the working zone, calculating a position of the new landmark on an absolute coordinate.
Abstract:
In a liquid crystal display apparatus, a lower substrate has a transmissive electrode formed in a transmissive area of a first substrate and a reflective electrode formed in a reflective area of the first substrate. An upper substrate has a second substrate, a first insulating layer formed on the second substrate corresponding to the transmissive area, a common electrode formed on the first insulating layer and the second substrate corresponding to the reflective area, and a second insulating layer formed on the common electrode corresponding to the reflective area. Accordingly, the liquid crystal display apparatus may have a uniform cell gap, thereby improving a reflectance and a transmittance thereof.
Abstract:
A vertical alignment mode reflective-transmissive liquid crystal display (LCD) includes the first substrate having an upper surface and a lower surface and the second substrate having an upper surface and a lower surface and facing the first substrate. A cell is formed between the upper surface of the first substrate and the lower surface of the second substrate. The cell has a plurality cell-gaps. A vertically aligned liquid crystal layer is disposed in the cell. The reflective region of the LCD has a cell-gap ranging from about 1.8 μm to about 2.2 μm, and the transmissive region of the LCD has a cell-gap ranging from about 3.6 μm to about 4.0 μm. The first optical film assembly including the first polarizer is disposed on the lower surface of the first substrate. The second optical film assembly including the second polarizer is disposed on the upper surface of the second substrate. An absorption axis of the first polarizer is substantially perpendicular to that of the second polarizer.
Abstract:
An array substrate includes a plate, a switching element, an insulating layer and a pixel electrode. The plate includes a pixel region, and the switching element is disposed on the plate. The insulating layer is disposed on the plate to include an opening for a multi-domain disposed in the pixel region and a contact hole. An electrode of the switching element is partially exposed through the contact hole. The pixel electrode is disposed on the insulating layer corresponding to the pixel region, an inner surface of the opening for the multi-domain and an inner surface of the contact hole so that the pixel electrode is electrically connected to the electrode of the switching element. Therefore, the viewing angle and the image display quality of the LCD apparatus are improved, and a manufacturing process is simplified.
Abstract:
Provided are WLAN system management procedure and a station supporting the procedure. In the management procedure, a station receives one or more event request frames each of which includes zero or more event request elements, wherein each of the event request elements comprises an event type field for specifying the event type of an event request. After reception, if the station moves to a different Extended Service Set (ESS), the station cancels all outstanding event requests of the event request frames and deletes all pending event report frames and event data.