Abstract:
An organic light emitting diode display including a plurality of pixel areas and a transparent area interposed between the plurality of pixel areas, the display includes a substrate member, thin film transistors and capacitor elements on the substrate member, the thin film transistor and the capacitor elements overlapping with the pixel areas, a gate line, a data line, and a common power supply line on the substrate member, the gate line, the data line, and the common power supply line overlapping with the pixel areas and the transparent area, and being connected to corresponding ones of the thin film transistors and/or the capacitor elements, and pixel electrodes on the substrate member, the pixel electrodes overlapping with all of the thin film transistors and capacitor elements, and with respective portions of the gate line, the data line, and the common power supply line that overlap with the pixel areas.
Abstract:
An OLED display device includes a plurality of pixels including sub-pixels arranged along a first direction, the sub-pixels being arranged in an order emitting red, blue, and green lights along the first direction or in a reverse order, wherein an arrangement of colors of light emitted from sub-pixels of one pixel is symmetrical to an arrangement of colors of light emitted from sub-pixels of an adjacent pixel, and wherein a light emitting layer of the sub-pixel emitting red light includes a light emitting layer emitting red light and a light emitting layer emitting blue light, a light emitting layer of the sub-pixel emitting blue light includes a light emitting layer emitting blue light, and a light emitting layer of the sub-pixel emitting green light includes a light emitting layer emitting green light and a light emitting layer emitting blue light.
Abstract:
An Organic Light Emitting Display (OLED) and its fabrication method has a pixel defining layer provided on a first electrode which is formed with a gas vent groove to allow gas to vent when the pixel defining layer is being formed, so that gas is not left in a pixel but vented when a donor film is laminated by a Laser-Induced Thermal Imaging (LITI) method, thereby decreasing edge open failures.
Abstract:
Provided are a photosensor, a photosensor apparatus including the photosensor, and a display apparatus including the photosensor apparatus. The photosensor includes a substrate; a first light receiving layer which is formed on the substrate and comprises an oxide; a second light receiving layer which is connected to the first light receiving layer and comprises an organic material; and first and second electrodes which are respectively connected to the first and second light receiving layers.
Abstract:
An illumination apparatus which can easily display desired color light by individually controlling light emission of at least two organic light emitting devices while reducing the operational voltage. The illumination apparatus includes: a light emitting unit includes scanning lines, data lines crossing the corresponding scanning lines, and light emitting areas connected between the scanning lines and the data lines, where the light emitting areas include a first light emitting area including at least two first organic light emitting devices emitting a first color and a second light emitting area including at least two second light emitting devices emitting a second color different from the first color; and a driving unit non-simultaneously driving the first light emitting area and the second light emitting area to emit light during a frame. The method of driving the illumination apparatus includes individually emitting light from the first and second light emitting areas by respectively applying data signals to the first and second light emitting areas via the data lines connected thereto during a frame.
Abstract:
A full color organic electroluminescent device and a method for fabricating the same reduces misalignment errors caused by fine patterning of the emitting layer by reducing the steps of the fine patterning process. In particular, the blue emitting layer functions as a hole inhibition layer which results in superior color purity and improved stability for the color organic electroluminescent device. The use of such a blue emitting layer also reduces the manufacturing steps. The device comprises a substrate; a first electrode pattern formed on the substrate; a red emitting layer formed by patterning a red emitting material on a red pixel region of the first electrode pattern and a green emitting layer formed by patterning a green emitting material on a green pixel region of the first electrode pattern. A blue emitting layer is applied over the entire substrate, over the upper parts of the red and green emitting layers and a second electrode is formed on an upper part of the blue emitting layer.
Abstract:
An organic light emitting diode, and a method of fabricating the same, the organic light emitting diode including a pixel-defining layer disposed on a substrate, the pixel-defining layer having an opening therein and having at least one stepped portion formed adjacent to the opening, and an organic layer disposed in the opening and at least partially covering the at least one stepped portion.
Abstract:
The present invention is directed to a full color organic electroluminescent device which comprises a substrate; a first electrode formed on the substrate; an organic emitting layer formed on the first electrode, and having a red-emitting layer, a green-emitting layer and a blue-emitting layer, respectively patterned in a red pixel region, a green pixel region and a blue pixel region, and having the red and green-emitting layer consisting of a phosphorescent material and the blue-emitting layer consisting of a fluorescent material; a hole blocking layer formed on the organic emitting layer as a common layer; and a second electrode formed on the hole blocking layer, so that the full color organic electroluminescent device having enhanced lifetime and luminous efficiency characteristics can be provided.
Abstract:
A donor substrate for a full-color organic electroluminescent display device includes: a base film; a light-to-heat conversion layer formed on the base film; and a transfer layer formed on the light-to-heat conversion layer. The transfer layer is an organic layer including a patterned organic electroluminescent material. Accordingly, it is possible to manufacture a high definition and large-sized organic electroluminescent display device in which misalignment does not occur upon forming an emission layer. The donor substrate and a full-color organic electroluminescent display device including the donor substrate are manufactured by methods according to the present invention.
Abstract:
A method of fabricating an OLED is provided. The method includes providing a substrate, in which a pixel electrode is formed. In addition, the method includes laminating a donor substrate attached to a frame on an entire surface of the substrate, and irradiating a laser to a predetermined region of the donor substrate to form an organic layer pattern on the pixel electrode. The present invention provides a method of fabricating the OLED capable of suppressing generation of contaminants such as particles and so on, and preventing the donor substrate from sagging or bending, as well as improving transfer efficiency since the donor substrate and the substrate are readily adhered to each other to maintain vacuum state.