Abstract:
A system and method for building and/or manipulating a centralized medical image quantitative information database aid in diagnosing diseases, identifying prevalence of diseases, and analyzing market penetration data and efficacy of different drugs. In one embodiment, the diseases are bone-related, such as osteoporosis and osteoarthritis. Subjects' medical images, personal and treatment information are obtained at information collection terminals, for example, at medical and/or dental facilities, and are transferred to a central database, either directly or through a system server. Quantitative information is derived from the medical images, and stored in a central database, associated with subjects' personal and treatment information. Authorized users, such as medical officials and/or pharmaceutical companies, can access the database, either directly or through the central server, to diagnose diseases and perform statistical analysis on the stored data. Decisions can be made regarding marketing of drugs for treating the diseases in question, based on analysis of efficacy, market penetration, and performance of competitive drugs.
Abstract:
The present invention relates to network enabled analysis of x-ray images. Also described are devices comprising calibration phantoms; methods of using these devices; methods of formulating databases containing information regarding x-ray images; the databases themselves; and methods of manipulating the information and databases.
Abstract:
The present invention relates to network enabled analysis of x-ray images. Also described are devices comprising calibration phantoms; methods of using these devices; methods of formulating databases containing information regarding x-ray images; the databases themselves; and methods of manipulating the information and databases.
Abstract:
A device for grasping an implant is provided. The implant has a first and second surface, with at least one of the first and seconds surfaces being non-planar. The device includes a first grasping element having a first grasping surface that conforms to the first surface of the implant, and a second grasping element having a second grasping surface conforming to the second surface of the implant. At least one of the first grasping element and the second grasping element can be moved to grasp the implant, such that the first grasping surface contacts the first surface of the implant and the second grasping surface contacts the second surface of the implant.
Abstract:
Methods are disclosed for assessing the condition of a cartilage in a joint, particularly a human knee. The methods include converting an image such as an MRI to a three dimensional map of the cartilage. The cartilage map can be correlated to a movement pattern of the joint to assess the affect of movement on cartilage wear. Changes in the thickness of cartilage over time can be determined so that therapies can be provided. Information on thickness of cartilage and curvature of cartilage or subchondral bone can be used to plan therapy. Information on movement pattern can be used to plan therapy.
Abstract:
The present invention describes methods, devices and instruments for resurfacing or replacing facet joints, uncovertebral joints and costovertebral joints. The joints can be prepared by smoothing the articular surface on one side, by distracting the joint and by implant insertion. Implants can be stabilized against a first articular surface by creating a high level of conformance with said first articular surface, while smoothing the second articular surface with a surgical instrument with a smooth mating implant surface.
Abstract:
The present invention relates to methods and devices for analyzing x-ray images. In particular, devices, methods and algorithms are provided that allow for the accurate and reliable evaluation of bone structure from x-ray images.
Abstract:
The present invention relates to network enabled analysis of x-ray images. Also described are devices comprising calibration phantoms; methods of using these devices; methods of formulating databases containing information regarding x-ray images; the databases themselves; and methods of manipulating the information and databases.
Abstract:
Described herein are methods for analyzing bone structure and/or bone density, methods for estimating fracture risk in a subject as well as methods for monitoring the efficacy of an agent on bone structure and/or bone density.
Abstract:
The present invention relates to a method for diagnosing hypertension, and/or allergy, and/or hair loss, and/or liabilty for infection, of a human being, or a predisposition therefor; to a nucleic acid molecule coding for a human ClCKb protein comprising a genetic alteration at amino acid position 481 compared to the wild type, as well as for corresponding segments thereof; to a nucleic acid molecule which binds to the before-mentioned nucleic acid molecule under stringent conditions, as well as to a nucleic acid molecule which binds to that nucleic acid molecule; to a (poly)peptide encoded by the afore-mentioned nucleic acid molecules; to a method for identifying substances modulating activity of a peptide derived from ClCKb protein that is genetically altered at amino acid position 481 compared to the wild type; to a substance for modulating activity of a peptide derived from ClCKb protein that is genetically altered at amino acid position 481 compared to the wild type; to methods for preparing a pharmaceutical composition for treatment of hypertension, and/or allergy, and/or hair loss, and/or liability for infection; to pharmaceutical compositions; and to a method for treating a human being affected by hypertension, and/or allergy and/or hair loss, and/or liability for infection.