Abstract:
Systems, methods, apparatuses, and computer readable media are disclosed for improving, in some examples, registration of radio frequency tags with a location system. Example embodiments may include a method for registering a participant with a radio frequency (RF) location tag. The method may include determining tag derived data from the one or more registered RF location tags, identifying at least one unregistered RF location tag, determining an identity of a participant for registration with the unregistered RF location tag based at least in part on the tag derived data from the one or more registered RF location tags, and registering the unregistered RF location tag with the participant.
Abstract:
Provided herein are systems, methods and computer readable media for monitoring the health and fitness of an individual. An example method comprises correlating a tag to the individual and receiving tag derived data indicative of a location for the individual, or correlating a sensor to the individual and receiving sensor derived data indicative of at least one of a health, a fitness, an operation level, or a performance level for the individual. The method further comprises comparing the tag location data of the tag derived data to individual dynamics/kinetics models and/or comparing the sensor derived data to at least one of health models, fitness models, operation level models, or performance level models. A HFOP status is then determined for the individual based on the comparing the tag location data to individual dynamics/kinetics models and/or on the comparing the sensor derived data to at least one of health models, fitness models, operation level models, or performance level models.
Abstract:
Provided herein are devices, methods and other means, including those related to printers, as well as computer readable media for storing code to execute instructions for a device, and other systems for providing and supporting mobile printing and other types of devices. The printer, for example, can be coupled with one or more docks and/or other accessory devices, examples of which are also discussed herein.
Abstract:
A near-field coupling device that may facilitate communications with a transponder is provided. The near-field coupling device may include a ground plane, a dielectric substrate, one or more conductive strips and a terminating load. The conductive strips together with the ground planes form coupling elements. The near-field coupling device further includes one or more switching elements for selectively connecting and disconnecting the coupling elements with a transceiver. The connected coupling elements define a total characteristic impedance. Using the switching element, the ratio between the total characteristic impedance of the connected coupling elements and the terminating load may be changed in order to adjust the distribution of an electromagnetic field along the coupling elements according to the type and position of the transponder to be processed.
Abstract:
Methods, systems, computer readable media and other means for generating a profile for a particular type of media are provided. The profile represents a set of preferred printing parameters to be used to achieve a target print quality for a reference printing device. The profile may be used by other non-reference printing devices in order to optimize printing for that type of media. For each non-reference printing device, an offset may be established that represents the differences between the non-reference and the reference printing devices. A processor of the non-reference printing device may identify the type of media and the profile for that media and then adjust the printing parameters for the non-reference printing device based on the profile and the offset in order to optimize the print quality. The profile may also include a parameter that is based on a temperature coefficient associated with the type of printer.
Abstract:
Provided is a direct thermal media containing a regular repeating pattern of color-forming thermally-imageable stripes printed parallel to the print head element line and a system for using such direct thermal media in color direct thermal printers including an optical registration system optimized for use with this media and an image processing unit that monitors the position of the stripe pattern relative to the print head and synchronizes the start of the printing process. This direct thermal media together with the optical registration system and image processing unit comprise an operative system in that the design of the thermal media, the optical registration system and image processing unit used to control printing are optimized for use with each other. This system may be utilized, for example, in color thermal printers for documents, receipts, tags, tickets or labels.
Abstract:
A device for processing media may include a printhead pressure adjustment assembly including a barrel and a biasing element configured to apply a biasing force to the printhead, where the biasing force may be adjustable in response to the barrel being rotated about its axis. The printhead pressure adjustment assembly may further include a threaded insert received within the barrel and configured to move axially within the barrel in response to the barrel being rotated. The printhead pressure adjustment assembly may further include a cup received within the barrel and attached to the biasing element. The adjustment assembly may include a spring disposed between the threaded insert and the cup, where the spring is compressed in response to the barrel being rotated in a first direction and the spring is decompressed in response to the spring being rotated in a second direction.
Abstract:
An XML system is configured to print bar code labels, tags, tickets, cards, or other media, and/or encode RFID devices embedded in media, based upon an extensible markup language (XML) input data stream. The XML system includes a computer system having a memory subsystem, a communication interface operatively coupled to a network, an XML processor configured to receive and process the XML input data stream, and an extensible stylesheet language transformation (XSLT) processor configured to either obtain a stylesheet identified in the XML data stream or obtain the stylesheet from a stylesheet repository. The XSLT processor transforms data in the XML input data stream into transformed XML data based upon the stylesheet obtained. Also included is an extensible stylesheet language formatting object (XSLFO) processor configured to format the transformed XML data into formatted XML data based upon XSLFO instructions contained in the stylesheet, and a rendering subsystem configured to receive the formatted XML data and generate a printable representation of the bar code label, tag, ticket, card, other media, and/or generate encoding information for an RFID device.
Abstract:
An example disclosed output hopper includes a cavity to receive media units from an output of a media processing device, the cavity to cause the media units to form a stack in a first direction; a first door pivotably movable between a closed position and an open position, the first door to retain the media units in the cavity when in the closed position; a second door movable between the closed position and the open position, the second door to retain the media units in the cavity when in the closed position; wherein the first door is configured to pivot on a first axis substantially parallel to the first direction; and the second door is configured to pivot on a second axis substantially parallel to the first direction.
Abstract:
A printhead assembly structured to be removably received into a printhead guide of a media processing device having a platen and a biasing assembly, the printhead assembly comprising a printhead and a support body. The support body is adapted to support the printhead. The support body is structured to slidably translate within the printhead guide between a disengaged position, where the printhead is removed from the platen, and an engaged position, wherein the printhead is positioned proximate the platen. The support body defines an interface member structured to removably engage the biasing assembly.