Abstract:
The present invention provides a technique for scheduling data, and in particular, scheduling real-time or voice data for transmissions during a transmit time interval in a multi-carrier communication environment. For each transmit time interval, channel condition indicia for multiple users is determined, and an iterative scheduling process is then implemented based in part on the channel condition indicia. The iterative scheduling initially pre-assigns select tones for each of the remaining users that have not been permanently assigned tones for the given transmit time interval. Next, the remaining user having the least favorable channel conditions is selected as an active user. The newly selected active user is then permanently assigned the select tones that were initially pre-assigned to that particular user. The permanently assigned tones are removed from consideration, and the process is repeated until all the remaining users are permanently assigned unique tones for scheduling.
Abstract:
In some embodiments of the invention, OFDM symbols are transmitted as a plurality of clusters. A cluster includes a plurality of OFDM sub-carriers in frequency, over a plurality of OFDM symbol durations in time. Each cluster includes data as well as pilot information as a reference signal for channel estimation. In some embodiments, a plurality of clusters collectively occupy the available sub-carrier set in the frequency domain that is used for transmission. In some embodiments of the invention data and/or pilots are spread within each cluster using code division multiplexing (CDM). In some embodiments pilots and data are separated by distributing data on a particular number of the plurality of OFDM symbol durations and pilots on a remainder of the OFDM symbol durations. CDM spreading can be performed in time and/or frequency directions.
Abstract:
Methods and systems are provided for use with wireless networks having one or more cell in which each cell includes a base station (BS), at least one relay station (RS) and at least one mobile station (MS). The at least one relay station can be used as an intermediate station for providing communication between the BS and MS. Methods are provided for allocating OFDM resources for communicating between the BS, RS and/or MS for example dividing transmission resources into uplink and downlink transmissions and methods of inserting pilot symbols intotransmission resources used by the RS. In some embodiments on the invention, the methods are consistent and/or can be used in conjunction with existing standards such as 802.16e.
Abstract:
The present invention provides a preamble that is inserted into an OFDMA frame and has a common sequence for all the base stations participating in a transmission. The subscriber station performs fine synchronization using the common sequence on the common preamble, and the resulting peaks will provide the locations of candidate base stations. The base station specific search is then performed in the vicinities of those peaks by using base station specific pseudo-noise sequences. With this two stage cell search, the searching window is drastically reduced. The preamble is matched to known values by a respective receiver to decode the signals and permit multiple signals to be transferred from the transmitter to the receiver. The preamble may comprise two parts, Preamble-1 and Preamble-2, which may be used in different systems, including multioutput, multi-input (MIMO) systems.
Abstract:
Security in wireless communication networks that employ relay stations to facilitate communications between base stations and mobile stations is enhanced. In one embodiment, resource information provided to one or more relay stations from a base station or another relay station is encrypted prior to being delivered to the one or more relay stations. Only authorized relay stations are allocated an appropriate key necessary to decrypt the resource information. As such, only appropriate relay stations are able to access and use the resource information to effect communications directly or indirectly between the base stations and the mobile stations. In certain embodiments, the resource information is delivered between the various base and relay stations using either unicast or multicast delivery techniques.
Abstract:
A codebook C is provided in a MIMO transmitter as well as a MIMO receiver. The codebook C will include M codewords ci, where i is a unique codeword index for each codeword ci. Each codeword defines weighting factors to apply to the MIMO signals, and may correspond to channel matrices or vectors to apply to the MIMO signals prior to transmission from the respective antennas of the MIMO transmitter. The present invention creates codeword subsets Si for each codeword ci of the codebook C. Each codeword subset Si defines L codewords cj, which are selected from all the codewords ci in the codebook C. The codewords cj in a codeword subset Si are the L codewords in the entire codebook that best correlate with the corresponding codeword ci.
Abstract:
The present invention provides a preamble that is inserted into an OFDMA frame and has a common sequence for all the base stations participating in a transmission. The subscriber station performs fine synchronization using the common sequence on the common preamble, and the resulting peaks will provide the locations of candidate base stations. The base station specific search is then performed in the vicinities of those peaks by using base station specific pseudo-noise sequences. With this two stage cell search, the searching window is drastically reduced. The preamble is matched to known values by a respective receiver to decode the signals and permit multiple signals to be transferred from the transmitter to the receiver. The preamble may comprise two parts, Preamble-I and Preamble-2, which may be used in different systems, including multioutput, multi-input (MIMO) systems.
Abstract:
A method and apparatus for improving channel estimation within an OFDM communication system. Channel estimation in OFDM is usually performed with the aid of pilot symbols. The pilot symbols are typically spaced in time and frequency. The set of frequencies and times at which pilot symbols are inserted is referred to as a pilot pattern. In some cases, the pilot pattern is a diagonal-shaped lattice, either regular or irregular. The method first interpolates in the direction of larger coherence (time or frequency). Using these measurements, the density of pilot symbols in the direction of faster change will be increased thereby improving channel estimation without increasing overhead. As such, the results of the first interpolating step can then be used to assist the interpolation in the dimension of smaller coherence (time or frequency).
Abstract:
Methods and systems are provided that enable an OFDM transmitter to be used for transmitting conventional OFDM or a form of transformed OFDM. A technique is provided for transforming a coded and modulated sequence of samples prior to an IFFT that enables the transformed sequence of samples to be transmitted using conventional OFDM or transformed OFDM. The selection of a transform function for transforming the coded and modulated sequence of samples may be based on optimizing the transform function for particular operating conditions between the transmitter and receiver. In some embodiments of the invention OFDM and time transformed OFDM are multiplexed in time and/or frequency in a transmission frame. In some embodiments of the invention a pilot pattern is provided in which the pilot are sent using OFDM and data is sent using OFDM and/or transformed OFDM.
Abstract:
A wireless communication access path exists between an ingress station and an egress station. A logical communication tunnel is established between the ingress and egress stations directly or through any number of intermediate relay stations to handle session flows of PDUs. As PDUs arrive, the ingress station may determine and add information bearing on an identified QoS associated with the PDU to the PDUs before they are delivered to the downstream egress station(s) or intermediate relay station(s). The information may be used by the downstream stations to schedule the PDUs for further delivery. The information may also be used by the egress station to schedule the PDUs for delivery.