Abstract:
An immersion lithographic apparatus has adaptations to prevent or reduce bubble formation in one or more gaps in the substrate table by preventing bubbles escaping from the gap into the beam path and/or extracting bubbles that may form in the gap.
Abstract:
In an immersion lithography apparatus, the immersion liquid is supplied from a tank via a flow restrictor. The liquid held in the tank is maintained at a substantially constant height above the flow restrictor to ensure a constant flow of liquid.
Abstract:
A lithographic projection apparatus includes a support structure configured to hold a patterning device, the patterning device configured to pattern a beam of radiation according to a desired pattern; a substrate table configured to hold a substrate; a projection system configured to project the patterned beam onto a target portion of the substrate; a liquid supply system configured to provide liquid to a space between the projection system and the substrate; and a shutter configured to isolate the space from the substrate or a space to be occupied by a substrate.
Abstract:
A support apparatus for a lithographic apparatus has an object holder and an extraction body radially outward of the object holder. The object holder is configured to support an object. The extraction body includes an extraction opening configured to extract fluid from a top surface of the support apparatus. The extraction body is spaced from the object holder such that the extraction body is substantially decoupled from the object holder. The extraction body comprises a projection configured such that it surrounds the object holder and such that, in use, a layer of liquid is retained on the projection and in contact with an object supported on the object holder.
Abstract:
A substrate holder for a lithographic apparatus has a main body having a thin-film stack provided on a surface thereof. The thin-film stack forms an electronic or electric component such as an electrode, a sensor, a heater, a transistor or a logic device, and has a top isolation layer. A plurality of burls to support a substrate are formed on the thin-film stack or in apertures of the thin-film stack.
Abstract:
A lithographic apparatus comprises a substrate table for accommodating a substrate; a projection system for imaging a pattern onto the substrate, and a metrology system for measuring a position of the substrate table with respect to the projection system. The metrology system comprises a metrology frame connected to the projection system, a grid positioned stationary with respect to the metrology frame, and an encoder connected to the substrate table and facing the grid for measuring the position of the substrate table relative to the grid. The metrology frame has a surface oriented towards the substrate table, and the surface has been configured, e.g., by writing or etching, so as to form the grid.
Abstract:
In a lithographic projection apparatus, a liquid supply system maintains liquid in a space between a projection system of the lithographic projection apparatus and a substrate. A sensor positioned on a substrate table, which holds the substrate, is configured to be exposed to radiation when immersed in liquid (e.g., under the same conditions as the substrate will be exposed to radiation). By having a surface of an absorption element of the sensor, that is to be in contact with liquid, formed of no more than one metal type, long life of the sensor may be obtained.