Abstract:
The present invention discloses a method for mapping physical random access channels, which comprises the following steps: the PRACHs in the same time domain location are mapped from low frequency to high frequency, or from high frequency to low frequency in usable frequency resource, wherein one PRACH occupies 6 resource blocks, and the frequency bands occupied by two adjacent PRACHs in the frequency domain do not overlap; or the PRACHs in the same time domain location are mapped from two sides to the middle in usable frequency resource, wherein one PRACH occupies 6 resource blocks, and the frequency bands occupied by two adjacent PRACHs in the frequency domain do not overlap. The present invention enables uniformly distributing the PRACHs which require to be processed by the same base station in the time domain, and decreasing the inter-cell interference of the second type PRACH to the utmost extent at the same time.
Abstract:
The invention discloses a method for generating a group identifier of the random access response message. The group identifier is determined according to the serial number of the subframe in which the random access time slot of random access preamble message transmitted by the terminal lies and the serial number of the random access channel in which the random access time slot lies. A random access method and a random access response method in a cellular radio communication system are also provided. Using the method of the present invention, the terminal needs not acquire the absolute system time of the cellular system in which the random access time slot lies, and can access the cellular radio communication system rapidly and accurately.
Abstract:
A method for indicating an uplink resource is provided, including that: when a base station side transmits an uplink resource indication signaling in a downlink subframe, an uplink subframe indication signaling corresponding to the uplink resource indication signaling being transmitted together; and the uplink subframe indication signaling is used for indicating an uplink subframe used by a user side to transmit data according to the uplink resource indication signaling. A system for implementing the method is also provided, which can distinguish a resource indication signaling corresponding to different uplink subframes in the same downlink subframe, and avoid that all the users of different uplink subframes transmit the data in the same resource of the same uplink frame, thereby avoiding mutual interference between the users of the uplink subframes, ensuring system performance and resulting in less signaling overhead.
Abstract:
The present invention discloses a method and a base station for allocating the dedicated random access resource. In the method, first, the base station allocates the dedicated random access preamble to the user equipment (UE), and allocates the predetermined physical random access channel (PRACH) to which the dedicated random access preamble corresponds in the allocated radio frame; then, the base station transmits the signaling to the UE, wherein, the signaling includes the time domain information and the frequency domain information of the predetermined PRACH. The technical solution provided by the present invention can allocate the same dedicated random access preamble for different PRACH channels to different UEs, and can improve the utilization efficiency of the dedicated random access preamble.
Abstract:
A method for classifying users is provided, which includes obtaining user attribute information of a user, matching the user attribute information with pre-determined user groups and/or pre-determined characters, and classifying the user into a user group and/or character that is matched successfully. A device for classifying users, a method for collecting and analyzing behaviors, and a system for collecting and analyzing behaviors are also provided.
Abstract:
A device includes a fin, a first gate and a second gate. The first gate is formed adjacent a first side of the fin and includes a first layer of material having a first thickness and having an upper surface that is substantially co-planar with an upper surface of the fin. The second gate is formed adjacent a second side of the fin opposite the first side and includes a second layer of material having a second thickness and having an upper surface that is substantially co-planar with the upper surface of the fin, where the first thickness and the second thickness are substantially equal to a height of the fin.
Abstract:
The present invention is directed to compositions and methods related to the synthesis and modification of uridine-5′-diphospho-sulfoquinovose (UDP-SQ). In particular, the methods of the present invention comprise the utilization of recombinant enzymes from Arabidopsis thaliana, UDP-glucose, and a sulfur donor to synthesize UDP-SQ, and the subsequent modification of UDP-SQ to form compounds including, but not limited to, 6-sulfo-α-D-quinovosyl diaclyglycerol (SQDG) and alkyl sulfoquinovoside. The compositions and methods of the invention provide a more simple, rapid means of synthesizing UDP-SQ, and the subsequent modification of UDP-SQ to compounds including, but not limited to, SQDG.
Abstract:
A method of manufacturing a semiconductor device includes providing a strained-silicon semiconductor layer over a silicon germanium layer, and partially removing a first portion of the strained-silicon layer. The strained-silicon layer includes the first portion and a second portion, and a thickness of the second portion is greater than a thickness of the first portion. Initially, the first and second portions of the strained-silicon layer initially can have the same thickness. A p-channel transistor is formed over the first portion, and a n-channel transistor is formed over the second portion. A semiconductor device is also disclosed.
Abstract:
A semiconductor device includes a substrate and an insulating layer on the substrate. The semiconductor device also includes a fin structure formed on the insulating layer, where the fin structure includes first and second side surfaces, a dielectric layer formed on the first and second side surfaces of the fin structure, a first gate electrode formed adjacent the dielectric layer on the first side surface of the fin structure, a second gate electrode formed adjacent the dielectric layer on the second side surface of the fin structure, and a doped structure formed on an upper surface of the fin structure in the channel region of the semiconductor device.
Abstract:
An event-based system and process for recording and playback of collaborative electronic presentations is presented. The present system and process includes a technique for recording collaborative electronic presentations by capturing and storing the interactions between each participant and presentation data where each interaction event is timestamped and linked to a data file comprising the presentation data. The present system and process also includes a technique for playing back the recorded collaborative electronic presentation, which involves displaying the presentation data in an order it was originally presented and reproducing the recorded interactions between each participant and the displayed presentation data at the same point in the presentation that they were originally performed, based on the aforementioned timestamps.