Abstract:
An integrated circuit includes an output pad, an alarm output pad, and a test mode output pad. A first multi-bit register is programmable to store programmable data such as data that identifies a customer for whom the integrated circuit has been manufactured. A second multi-bit register is programmable to store customer specified threshold data. A first circuit selectively couples the first and second multi-bit registers to the output pad. The first circuit is operable responsive to the integrated circuit being placed into a test mode to perform parallel-to-serial conversion of either the customer identification data stored in the first multi-bit register or the customer specified threshold data stored in the second multi-bit register and drive the converted data for output through the output pad. The integrated circuit further includes a tamper detection circuit operable responsive to the customer specified threshold data to generate a tamper alarm signal. A second circuit selectively couples the tamper alarm signal to the alarm output pad and test mode output pad depending on whether the integrated circuit is in a test mode. More specifically, the second circuit operates to drive the alarm output pad with the tamper alarm signal when the integrated circuit is not in test mode and drive the test mode output pad with the tamper alarm signal when the integrated circuit is in test mode (with the alarm output pad driven to a known state).
Abstract:
An SRAM having two capacitors connected in series between respective bit storage nodes of each memory cell. The two inverters of the memory cell are powered by a positive voltage and a low voltage. The two capacitors are connected to each other at a common node. A leakage current generator is coupled to the common node. The leakage current generator supplies to the common node a leakage current to maintain a voltage which is approximately halfway between the voltages of the high and low SRAM supplies.
Abstract:
A memory circuit has a high voltage and low voltage supply nodes. One of a first and second sets of voltages is selectively applied to the supply nodes of the memory circuit in dependence upon memory operational mode. If in active read/write mode, then the first set of voltages is selectively applied. Conversely, if in standby no-read/no-write mode, then the second set of voltages is selectively applied. A low voltage in the second set of voltages is greater than a low voltage in the first set of voltages by a selected one of a plurality of low offset voltages, and a high voltage in the second set of voltages is less than a high voltage in the first set of voltages by a selected one of a plurality of high offset voltages. The offset voltages are provided by diode-based circuits that are selectively active. Selective activation is provided by either selectably blowable fuse elements or selectively activated switching elements.
Abstract:
A battery protection structure is described. The structure provides battery overcharging protection while allowing for minimal battery voltage drop during normal battery operation. One resistance element sets voltage drop during normal operation, and the sum of two resistance elements sets the maximum battery charging current which will be allowed. The structure provides protection against single component failures.
Abstract:
A regulator circuit and method are disclosed for a system. The regulator circuit may include a compare circuit for comparing a first supply voltage to a predetermined voltage level and generating an enable signal based upon the comparison. A selectively enabled voltage regulator is adapted to make available a predetermined current level at a regulated voltage when enabled by the compare circuit. When disabled, the voltage regulator circuit is prohibited from providing current. The voltage regulator may include an output transistor that is normally biased in a saturation mode of operation and is deactivated by the enable signal. By controlling the output transistor based upon the output of the compare circuit, the need for a relatively large transistor for connecting to the first supply voltage is eliminated.
Abstract:
An electronic device incorporates a primary function circuit and a voltage regulator that provides a regulated voltage signal to the primary function circuit. The voltage regulator is responsive to a stress-enable signal indicative of whether or not an external voltage supplied to the voltage detector is within a predetermined range. The output voltage signal is controlled to be at a first voltage level when the external voltage is within the predetermined voltage range and at a second voltage level when the external voltage is outside of the predetermined range. The second voltage level may be an elevated voltage level to facilitate stress testing or burin-in of the electronic device.
Abstract:
A method and circuit are disclosed for an integrated circuit having one or more memory cells, each memory cell including first and second p-channel transistor and first and second n-channel transistors configured as cross-coupled logic inverters between first and second reference voltage levels during a normal mode of operation. Power control circuitry is coupled to a source terminal of the first p-channel transistor of each memory cell for providing to the first p-channel transistors the first reference voltage level during the normal mode of operation. This causes a first voltage less than the first reference voltage level to appear at the source terminal of the first p-channel transistors during a data corruption mode of operation wherein data stored in the one or more memory cells is corrupted.
Abstract:
A circuit and method are disclosed for monitoring the voltage level of an unregulated power supply. The circuit includes a voltage reference circuit for generating a first reference voltage signal and a trim circuit which generates a trimmed reference voltage signal based upon the first reference voltage signal. A comparator compares the unregulated power supply voltage to the trimmed reference voltage signal and asserts an output signal based upon the comparison. The output signal is fed back as an input to the trim circuit so that the trim circuit provides a hysteresis effect.
Abstract:
A reference voltage trim circuit includes a voltage follower receiving the reference voltage to be trimmed, with one or more resistive loads providing predefined voltage shifts serially connected between the output of the voltage follower and the output of the trim circuit. The voltage follower includes a current mirror differential amplifier receiving the reference voltage at one input and the output of the voltage follower at the other input, and a transistor with a resistive load connected between the power supply voltages and receiving the output of the current mirror differential amplifier at the transistor's gate. The resistive loads provide varying preselected voltage drop and are each shunted by corresponding fuses, with the entire series of resistive loads shunted by a master fuse. To trim the reference voltage, at least the master fuse is blown, together with the fuse(s) shunting resistive loads which combine to result in the desired trim voltage. Pass gates control which end of the resistive load series is connected to the output of the voltage follower and which is connected to the output of the trim circuit. To decrement the reference voltage, a first end is connected to the output of the voltage follower and the second end is connected to trim circuit output; to increment the reference voltage, the second end of the resistive load series is connected to the voltage follower output and the first end is connected to the trim circuit output.
Abstract:
A multiplexing circuit includes a reference terminal, a plurality of multiplexing input terminals, and a buffer having an input terminal and an output terminal. The multiplexing circuit also includes a plurality of first elements that each have a programmable conductivity and that are each serially coupled between a corresponding one of the multiplexing input terminals and the input terminal of the buffer. When one of the input signals is to be coupled to the multiplexer output terminal, the element corresponding to the selected input signal is programmed in a conductive state, and the remaining elements are programmed in a nonconductive state. When none of the input signals are selected, each element is programmed in a conductive state and the input signals each have the same value so as to prevent signal conflicts and short circuits at nodes within the multiplexing circuit.