Abstract:
An inlet, positioned to access the flow of air passing around and under a moving vehicle, may draw in air which is conveyed through a duct and discharged to cool a brake on a vehicle. The inlet has a closure. The closure is opened and closed on demand by a temperature-operated actuator incorporating an active or smart material under the direction of a controller. In embodiments, a sensor, suitably positioned to sense a temperature representative of the brake temperature, communicates the sensed brake temperature to the controller. The controller may respond to the sensed brake temperature, by triggering operation of the actuator. Typically the closure is opened to allow passage of cooling air to the brake when the sensed brake temperature exceeds, or is anticipated to exceed, a predetermined temperature.
Abstract:
A releasable connection connects a first component to a second component. The second component includes and is manufactured from a Shape Memory Polymer (SMP), and defines a pocket. The first component includes a portion disposed within the pocket. The pocket is deformed from an initial shape permitting insertion of the portion into the pocket to assembly the releasable connection into a connected shape wherein the pocket is deformed to secure the first component relative to the second component. The pocket is transformed from the initial shape into the connected shape by heating the SMP material of the second component to a switching temperature. Re-heating the SMP second component to the switching temperature returns the pocket back to the initial shape from the connected shape to disassembly the releasable connection.
Abstract:
A reconfigurable inflatable pickup truck box cover includes a base frame, a side wall system operatively connected to the base frame, and a top wall operatively connected to the side wall system. At least one of the base frame, the side wall system, and the top wall is inflatable.
Abstract:
An inflatable structure includes a top end cap, a bottom end cap, a bladder attached to the top and bottom end caps and configured to hold pressurized air therebetween, and a plurality of tethers disposed within the bladder, each tether in the plurality of tethers having a first end coupled to the top end cap and a second end coupled to the bottom end cap, wherein when the bladder is inflated, the bladder expands axially forcing the top end cap and the bottom end cap away from one another, the plurality of tethers adapted to restrict movement of the top end cap and the bottom end cap away from one another and limit axial expansion of the bladder, wherein, at least one of the plurality of tethers is elastic, and the inflatable structure is adapted to provide multiple support profiles that are capable of supporting compressive loading.
Abstract:
A vehicle seat and storage system includes a vehicle seat having a seat base and a seat back extending from the seat base. A storage apparatus is connected to the seat back and is movable from a stowed position against the seat back to an extended position away from the seat back. The storage apparatus is configured to position and secure one or more cargo items. A seat motor is operably connected to the seat. The seat motor is configured to move the seat back from a first position extending upward from the seat base to a second position where the seat back is disposed flat against the seat base.
Abstract:
An inflatable structure includes a top end cap, a bottom end cap, a bladder attached to the top and bottom end caps and configured to hold pressurized air therebetween, and a plurality of tethers disposed within the bladder, each tether in the plurality of tethers having a first end coupled to the top end cap and a second end coupled to the bottom end cap, wherein when the bladder is inflated, the bladder expands axially forcing the top end cap and the bottom end cap away from one another, the plurality of tethers adapted to restrict movement of the top end cap and the bottom end cap away from one another and limit axial expansion of the bladder, wherein, at least one of the plurality of tethers is elastic, and the inflatable structure is adapted to provide multiple support profiles that are capable of supporting compressive loading.
Abstract:
An inflatable cabinet is provided and includes a first inflatable cabinet stand and a base. The first inflatable cabinet stand is for storing products. The first inflatable cabinet stand includes members and first connectors. The members include side walls, a back wall, and a top member. The base is connected to the first inflatable cabinet stand and includes an air pump, second connectors and air lines. An air pump is configured to pump air into at least one of the members of the first inflatable cabinet stand. The second connectors are configured to connect to the first connectors. The air lines are connected between the air pump and the second connectors.
Abstract:
An inflatable structure includes a top end cap, a bottom end cap, a bladder, a nozzle, a loop, and a first tether. The bladder is attached to the top and bottom end caps and is configured to hold pressurized fluid therebetween. The nozzle is configured to allow fluid to enter and exit the bladder. The loop is attached to one of the top and bottom end caps. A tether is disposed within the bladder, coupled to the other one of the top and bottom end caps, and extends through the at least one loop. The top end cap assumes a first position when the bladder is inflated. When the top end cap is adjusted from the first position to a second position, the first tether is configured to maintain the top end cap in the second position.
Abstract:
An incrementally assembled skin-constrained inflatable bellows system includes a top end cap, a bottom end cap, and a bellows attached to and separating the top end cap and the bottom end cap and configured to hold pressurized fluid between the top and bottom end caps. The system further includes a nozzle configured to allow fluid to enter and exit the bellows, and an inextensible skin attached to each of the top end cap, the bottom end cap, and to the bellows. The top end cap assumes a first position when the bellows is inflated via the nozzle and, when the top end cap is adjusted from the first position to a second position, the skin is configured to maintain the top end cap in the second position and constrains the bellows into a predefined rigid three-dimensional shape.
Abstract:
A selectively rigidizable membrane for cargo management comprises a vacuum bladder, and a first architectural layer and a second architectural layer, each of the first and second architectural layers including a plurality of tiles interconnected by flexural elements, each of the tiles of the first and second architectural layers including at least one constraining element extending therefrom, wherein, when atmospheric pressure is present within the vacuum bladder, the first and second architectural layers are slidably moveable relative to one another and the membrane is flexible, and further wherein, when negative pressure is applied to the vacuum bladder, the first and second architectural layers are forced into engagement with one another, the constraining elements of the first and second architectural layers providing mechanical interference and preventing sliding movement of the first and second architectural layers relative to one another, causing the membrane to become substantially rigid.