Abstract:
Briefly, in accordance with one or more embodiments, a mobile station receives a location beacon transmitted from multiple base stations based on a transmission plan for a predefined downlink location based services zone in the superframes of a signal frame structure. The transmission plan includes spreading transmissions of the location beacon that are unique to respective base stations. The mobile station identifies the base stations based on the respective location beacons and the transmission plan. The mobile station identifies a present location based on the location beacons and the identities of the base stations that from which the location beacons were received.
Abstract:
Embodiments of an apparatus, system and method are described for a base station. Notification from a mobile station in a network may be received. A multi-carrier advertisement with a base station multi-carrier configuration may be sent. The base station multi-carrier configuration may include at least one carrier index associated with a carrier frequency operated on by the base station. Other embodiments are described and claimed.
Abstract:
A system and method for handoff are provided. A mobile station performs a make-before-break handoff of a control channel between a serving and target base station and a break-before-make handoff of a traffic channel between the serving and target base stations. The traffic channel handoff is performed after the control channel handoff has completed.
Abstract:
Briefly, in accordance with one or more embodiments, two or more cells are configured to perform coordinated multipoint (CoMP) transmission for one or more user equipment devices with a common media access control (MAC) or a common radio resource control (RRC). Measurement information is received from the one or more user equipment devices. One or more of the cells may be deactivated, or one or more additional cells may be activated for coordinated multipoint transmission based at least in part on the measurement information.
Abstract:
Technology for configuring component carriers in carrier aggregation is disclosed. One method comprises scanning for an enhanced Node B (eNode B) with a user equipment (UE). An eNode B is selected by the UE. The UE is attached to an available carrier provided by the eNode B. The available carrier is designated as a Primary Component Carrier (PCC). The PCC is configured as a component carrier pair comprising a downlink primary component carrier (DL PCC) and an uplink primary component carrier (UL PCC). Mobility management and security input information is received at the UE from the eNode B via the DL PCC and the UL PCC.
Abstract:
Multi-carrier operational modes in a wireless communications protocol are described, along with a method of initializing a mobile station in order to prepare for multi-carrier operation and a carrier management method within a wireless communications protocol.
Abstract:
The various inventive embodiments relate to arrangement of information elements (IEs) for persistent and/or dynamic allocations in a wireless broadband network and include optimization techniques to eliminate the repetitive information fields from the downlink (DL)-Persistent-IEs, uplink (UL)-Persistent-IEs, DL-IEs, and UL-IEs. Elimination of repetitive information fields reduces MAP overhead. In addition embodiments relate to methods to use the same hybrid automatic repeat request (HARQ) region to contain persistent as well as non-persistent allocations. The use of the same HARQ region for persistent as well as non-persistent allocations further reduces the MAP overhead as it requires a single header to define the HARQ region instead of the two headers that are required to define two different HARQ regions: one for persistent allocation and the second one for non-persistent allocations.
Abstract:
Various embodiments of the invention determine and/or enhance the location of a wireless mobile station in a WiMAX network, and provide that location to a requesting device. Some embodiments produce more that one determination of the location, using different sources for the information, and combine the different determinations to produce an enhanced version of the location.
Abstract:
A system and method for handoff are provided. A mobile station performs a make-before-break handoff of a control channel between a serving and target base station and a break-before-make handoff of a traffic channel between the serving and target base stations. The traffic channel handoff is performed after the control channel handoff has completed.
Abstract:
A system and method for handoff are provided. A mobile station performs a make-before-break handoff of a control channel between a serving and target base station and a break-before-make handoff of a traffic channel between the serving and target base stations. The traffic channel handoff is performed after the control channel handoff has completed.