Abstract:
A method of transmitting, by a transmitter, information in a wireless communication system, the method includes generating first and second symbols; generating first and second transmit vectors on the basis of an Alamouti code from the first and second symbols; and transmitting the first transmit vector through a first antenna and transmitting the second transmit vector through a second antenna. The first transmit vector consists of a first transmit symbol and a second transmit symbol. The second transmit vector consists of a third transmit symbol and a fourth transmit symbol. The first, second, third, and fourth transmit symbols are transmitted based on first and second resource indexes. The first symbol is a first modulation symbol for first information, and the second symbol is a second modulation symbol for second information.
Abstract:
Embodiments of the present invention relate to a method and an apparatus for enabling a terminal to transmit a signal in a wireless communication system. According to one embodiment, a signal transmission method includes: receiving configuration information for multi-antenna transmission from a base station; configuring a multi-antenna transmission mode in accordance with the received configuration information; and transmitting an uplink channel having a plurality of symbols to the base station through multiple antennas.
Abstract:
The present invention provides a method and an apparatus for the transmission of control signal in a radio communication system. The method includes the steps of processing first control information on the basis of a first resource index to create a first control signal, processing second control information on the basis of a second resource index to create a second control signal, and transmitting the first control signal and the second control signal.
Abstract:
A method for specifying a transport block-to-codeword mapping relationship and a method for transmitting a downlink signal using the same are described. If a swap flag has a first logic value, a first transport block is mapped to a first codeword and a second transport block is mapped to a second codeword. If the swap flag has a second logic value, the first transport block is mapped to the second codeword and the second transport block is mapped to the first codeword. If the size of any one of two transport blocks is 0, the swap flag is not used.
Abstract:
A method for transmitting ACK/NACK signal in a wireless communication system applied carrier aggregation is disclosed herein. More specifically, the method includes receiving multiple transmission blocks respectively through multiple downlink component carriers from a base station, determining ACK/NACK responses corresponding to each of the multiple transmission blocks by decoding the multiple transmission blocks, mapping the ACK/NACK responses to a ACK/NACK state information, and transmitting the ACK/NACK state information through a single uplink component carrier, wherein ACK information included in the ACK/NACK state information indicates a number of ACK response among the ACK/NACK responses.
Abstract:
A method of transmitting, by a transmitter, information in a wireless communication system, the method includes generating first and second symbols; generating first and second transmit vectors on the basis of an Alamouti code from the first and second symbols; and transmitting the first transmit vector through a first antenna and transmitting the second transmit vector through a second antenna. The first transmit vector consists of a first transmit symbol and a second transmit symbol. The second transmit vector consists of a third transmit symbol and a fourth transmit symbol. The first, second, third, and fourth transmit symbols are transmitted based on first and second resource indexes. The first symbol is a first modulation symbol for first information, and the second symbol is a second modulation symbol for second information.
Abstract:
Embodiments of the present invention are directed to a method and apparatus for transmitting and receiving a control signal (for example, PDCCH signal) in an asymmetric multicarrier environment. The method for transmitting a control signal for an asymmetric multicarrier in a wireless connection system according to one embodiment of the present invention comprises: determining the size of a carrier indicator field (CIF) indicating a downlink component carrier (DL CC) by which downlink data is transmitted, on the basis of a maximum value of the number of DL CCs and of the number of uplink component carriers (UL CCs) being managed in a base station; transmitting the CIF on a 1st DL CC to a terminal through a physical downlink control channel (PDCCH); and transmitting downlink data on a 2nd DL CC indicated by the CIF to the terminal through a physical downlink shared channel (PDSCH).
Abstract:
A method for transmitting a reference signal in a multi-antenna system is provided. The method includes: selecting at least one orthogonal frequency division multiplexing (OFDM) symbol in a subframe containing a plurality of OFDM symbols; allocating a channel quality indication reference signal (CQI RS) capable of measuring a channel state for each of a plurality of antennas to the selected at least one OFDM symbol; and transmitting the CQI RS, wherein the CQI RS is allocated to an OFDM symbol which does not overlap with an OFDM symbol to which a common reference signal to be transmitted to all user equipments in a cell or a dedicated reference signal to be transmitted to a specific user equipment in the cell is allocated.
Abstract:
A method of generating Acknowledgement/Negative Acknowledgement (ACK/NACK) information by a user equipment (UE) in a wireless communication system is discussed. The method includes receiving, by the UE from a base station (BS), a plurality of codewords through a plurality of downlink frequency bands related to a plurality of downlink carriers, wherein the UE is configured with a 1-codeword mode or a 2-codeword mode for each of the plurality of downlink frequency bands independently, and wherein a number of supported codewords is one for the 1-codeword mode or two for the 2-codeword mode; determining, by the UE, a total number of ACK/NACK bits, wherein the total number of ACK/NACK bits is determined based on a total number of the plurality of downlink carriers and the number of supported codewords; and generating, by the UE, a sequence of the ACK/NACK bits based on the total number of the ACK/NACK bits.
Abstract:
The present invention relates to a method for transmitting, by a base station, a downlink signal using a plurality of transmission antennas comprises the steps of: applying a precoding matrix indicated by the PMI, received from a terminal, in a codebook to a plurality of layers, and transmitting the precoded signal to the terminal through a plurality of transmission antennas. Among precoding matrices included in the codebook, a precoding matrix for even number transmission layers can be a 2×2 matrix containing four matrices (W1s), the matrix (W1) having rows of a number of transmission antennas and columns of half the number of transmission layers, the first and second columns of the first row in the 2×2 matrix being multiplied by 1, the first column of the second row being multiplied by coefficient “a” of a phase, and the first column of the second row being multiplied by “−a”.